
3/20/23

1

DYNAMIC PROGRAMMING
David Kauchak
CS 140 – Spring 2023

1

Admin

Back to normal schedule

Assignment 7 out tomorrow

2

Knapsack problems:
Greedy or not?

0-1 Knapsack – A thief robbing a store finds n items worth v1,
v2, .., vn dollars and weight w1, w2, …, wn pounds, where vi and
wi are integers. The thief can carry at most W pounds in the
knapsack. Which items should the thief take if they want to
maximize value.

Fractional knapsack problem – Same as above, but the thief
happens to be at the bulk section of the store and can carry
fractional portions of the items. For example, the thief could
take 20% of item i for a weight of 0.2wi and a value of 0.2vi.

3

Algorithmic "techniques"

Iterative/incremental: solve problem of size n by first
solving problem of size n-1.

Divide-and-conquer: divide problem into independent
subproblems. Solve each subproblem independently.
Combine solutions to subproblem to create solution to
the original problem.

Greedy: make locally optimal choice and repeat on
remaining subproblem.

4

3/20/23

2

Dynamic programming

Method for solving problems where optimal solutions
can be defined in terms of optimal solutions to
subproblems

AND
the subproblems are overlapping

5

Fibonacci: a first attempt

6

Running time

Each call creates two recursive calls

Each call reduces the size of the problem by 1 or 2

Creates a full binary of depth n

O(2n)

7

Can we do better?

Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

8

3/20/23

3

A lot of repeated work!

Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

9

Identifying a dynamic programming problem

The solution can be defined with respect to solutions to
subproblems

The subproblems created are overlapping, that is we
see the same subproblems repeated

10

Overlapping sub-problems

…

divide and
conquer

dynamic
programming

11

Dynamic programming: steps

1a) optimal substructure: optimal solutions to the problem
incorporate optimal solutions to related subproblems

¤ convince yourself that there is optimal substructure

1b) recursive definition: use this to recursively define the
value of an optimal solution

2) DP solution: describe the dynamic programming table:
¤ size, initial values, order in which it’s filled in, location of

solution

3) Analysis: analyze space requirements, running time

12

3/20/23

4

1a: optimal substructure

optimal solutions to a problem incorporate optimal
solutions to subproblems

?

13

1a: optimal substructure

optimal solutions to a problem incorporate optimal
solutions to subproblems

Sometimes the problem setup/structure meets the
optimal substructure criteria by definition

14

1b: recursive definition

Define a function and clearly define the inputs to the
function

The function definition should be recursive with respect to
multiple subproblems

¤ pretend like you have a working function, but it only
works on smaller problems

Key: subproblems will be overlapping, i.e., inputs to
subproblems will not be disjoint

15

1b: recursive definition

F(n) = ?

Fibonacci:

16

3/20/23

5

1b: recursive definition

F(n) = F(n-1) + F(n-2)

Fibonacci:

17

2: DP solution

The recursive solution will generally be top-down, i.e.,
working from larger problems to smaller

DP solution:
¤ work bottom-up, from the smallest versions of the

problem to the largest
¤ store the answers to subproblems in a table (often an

array or matrix)
¤ to build bigger problems, lookup solutions in the table

to subproblems

18

2: DP solution

F(n) = F(n-1) + F(n-2)

What are the smallest possible values
(subproblems)?

To calculate F(n), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

19

2: DP solution

F(n) = F(n-1) + F(n-2)

What are the smallest possible values
(subproblems)? F(1) = 1, F(2) = 1

To calculate F(n), what are all the subproblems we
need to calculate? This is the “table”. F(1) … F(n-1)

How should we fill in the table? F(1) à F(n)

20

3/20/23

6

2: DP solution

Store the intermediary values in an array (fib)

21

3: Analysis

Space requirements?

Running time?

22

3: Analysis

Space requirements: Θ(n)

Running time: Θ(n)

23

Counting binary search trees

How many unique binary search trees can be created
using the numbers 1 through n?

4

2

1 3 6

5

24

3/20/23

7

Step 1: What is the subproblem?

Assume we have a working function (call it T) that can give
us the answer to smaller subproblems

How can we use the answer from this to answer our question?

How many options for the root are there?

1 2 3 n

…

25

Subproblems

i

How many trees have i as the root?

26

Subproblems

1, 2, …, i-1 i+1, i+2, …, n

?

i

27

Subproblems

1, 2, …, i-1 i+1, i+2, …, n

i

T(i-1)

subproblem of
size i-1

?

28

3/20/23

8

Subproblems

1, 2, …, i-1 i+1, i+2, …, n

i

T(i-1)

subproblem of
size i-1

Number of trees for i+1, i+2, …, i+n
is the same as the number of trees
from 1, 2, …, n-i

29

Subproblems

1, 2, …, i-1 i+1, i+2, …, n

i

T(i-1)

subproblem of
size i-1

T(n-i)

subproblem of
size n-i

30

1a: optimal substructure

optimal solutions to a problem incorporate optimal
solutions to related subproblems

?

i

T(i-1) T(n-i)

31

1a: optimal substructure

optimal solutions to a problem incorporate optimal
solutions to related subproblems

By definition of binary trees: binary trees are
recursive structures

i

T(i-1) T(n-i)

32

3/20/23

9

1b: recursive definition

1, 2, …, i-1 i+1, i+2, …, n

i

T(i-1) T(n-i)

Given solutions for T(i-1) and T(n-i) how
many trees are there with i as the root?

33

1b: recursive definition

1, 2, …, i-1 i+1, i+2, …, n

i

T(i-1) T(n-i)

Trees with i as root = T(i-1) * T(n-i)

34

1b: recursive definition

1 2 3 n

…

How many trees total?

Trees with i as root = T(i-1) * T(n-i)

35

1b: recursive definition

1 2 3 n

…

å =
--=

n

i
inTiTnT

1
)(*)1()(

Trees with i as root = T(i-1) * T(n-i)

36

3/20/23

10

A recursive implementation

å =
--=

n

i
inTiTnT

1
)(*)1()(

Like with Fibonacci, we’re
repeating a lot of work

37

2: DP solution (from the bottom-up)

What are the smallest possible subproblems?

To calculate T(n), what are all the subproblems we need
to calculate? This is the “table”.

How should we fill in the table?

å =
--=

n

i
inTiTnT

1
)(*)1()(

38

2: DP solution (from the bottom-up)

What are the smallest possible subproblems?
T(0)=1, T(1) = 1

å =
--=

n

i
inTiTnT

1
)(*)1()(

Why do we need T(0) and why is it 1?

39

2: DP solution (from the bottom-up)

What are the smallest possible subproblems?
T(0)=1, T(1) = 1

å =
--=

n

i
inTiTnT

1
)(*)1()(

1
Need to think carefully about
base cases/edge cases

40

3/20/23

11

2: DP solution (from the bottom-up)

What are the smallest possible subproblems?
T(0)=1, T(1) = 1

To calculate T(n), what are all the subproblems we need
to calculate? This is the “table”. T(0) … T(n-1)

How should we fill in the table? T(0) à T(n)

å =
--=

n

i
inTiTnT

1
)(*)1()(

41

2: DP solution (from the bottom-up)

42

0 1 2 3 4 5 … n

Fill in the first 4 values

43

0 1 2 3 4 5 … n
1 1

44

3/20/23

12

0 1 2 3 4 5 … n
1 1

c[0]*c[1] + c[1]*c[0]

45

0 1 2 3 4 5 … n
1 1

2

1

1

2

c[0]*c[1] + c[1]*c[0]

46

0 1 2 3 4 5 … n
1 1 2

47

0 1 2 3 4 5 … n
1 1 2

c[0]*c[2] + c[1]*c[1] + c[2]*c[0]

1 2 3

48

3/20/23

13

0 1 2 3 4 5 … n
1 1 2 5

49

0 1 2 3 4 5 … n
1 1 2 5 …

50

3: Analysis

Space requirements?

Running time?

51

3: Analysis

Space requirements: Θ(n)

Running time: Θ(n2)

52

3/20/23

14

Subsequences

X = A B A C D A B A B

ABA?

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

53

Subsequences

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ABA

54

Subsequences

X = A B A C D A B A B

ACA?

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

55

Subsequences

X = A B A C D A B A B

ACA

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

56

3/20/23

15

Subsequences

X = A B A C D A B A B

DCA?

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

57

Subsequences

X = A B A C D A B A B

DCA

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

58

Subsequences

X = A B A C D A B A B

AADAA?

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

59

Subsequences

X = A B A C D A B A B

AADAA

For a sequence X = x1, x2, …, xn, a subsequence is a
subset of the sequence defined by a set of increasing
indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

60

3/20/23

16

Longest common subsequence (LCS)

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn

What is the longest common subsequence?

61

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn

What is the longest common subsequence?

X = A B C B D A B

Y = B D C A B A

62

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn

What is the longest common subsequence?

X = A B C B D A B

Y = B D C A B A

63

1a: optimal substructure

optimal solutions to a problem incorporate optimal
solutions to subproblems

Often a proof by contradiction:

Show: optimal solutions incorporate optimal solutions to
subproblems

Assume the optimal solution does not contain optimal solutions to
subproblems

Show this leads to a contradiction (often that we could create a
better solution using the solution to the subproblem)

64

3/20/23

17

1a: optimal substructure

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

Assume: 𝑠1, 𝑠2, … , 𝑠𝑚 is the LCS(X,Y), but 𝑠2, … , 𝑠𝑚 is not
the optimal solution to

LCS(substring_after(𝑠1, X), substring_after(s1, Y)).

If that were the case, then we could make a longer
subsequence by:
𝑠1 LCS(substring_after(𝑠1, X), substring_after(s1, Y))

Proof by contradiction:

contradiction

65

1b: recursive solution

X = A B C B D A B

Y = B D C A B A

Assume you have a solver for smaller problems

66

1b: recursive solution

X = A B C B D A ?

Y = B D C A B ?

Is the last character part of the LCS?

67

1b: recursive solution

X = A B C B D A ?

Y = B D C A B ?

Two cases: either the characters
are the same or they’re different

68

3/20/23

18

1b: recursive solution

X = A B C B D A A

Y = B D C A B A

If they’re the same

The characters are
part of the LCS

nmn xYXLCSYXLCS += --),(),(1...11...1

LCS

What is the recursive
relationship?

69

1b: recursive solution

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 YXLCSYXLCS n-=

70

1b: recursive solution

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 -= mYXLCSYXLCS

71

1b: recursive solution

X = A B C B D A B

Y = B D C A B A

If they’re different

X = A B C B D A B
Y = B D C A B A

?

72

3/20/23

19

1b: recursive solution

X = A B C B D A B

Y = B D C A B A

î
í
ì =+

=
--

--

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

(for now, let’s just worry about counting the length of the LCS)

73

2: DP solution

î
í
ì =+

=
--

--

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

two different indices

74

2: DP solution

î
í
ì =+

=
--

--

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

75

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

For Fibonacci and tree counting,
we had to initialize some entries in
the array. Any here?

76

3/20/23

20

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0
0
0
0
0
0
0

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

Need to initialize values within 1
smaller in either dimension.

77

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0
0
0
0
0
0
0

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

How should we fill in the table?

78

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0
0
0 ?
0
0
0
0

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

To fill in an entry, we may
need to look:
- up one
- left one
- diagonal up and left

Just need to make sure
these exist

79

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 ?
0
0
0
0
0
0

LCS(A, B)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

80

3/20/23

21

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0
0
0
0
0
0
0

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

81

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 ?
0
0
0
0
0
0

LCS(A, BDCA)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

82

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1
0
0
0
0
0
0

LCS(A, BDCA)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

83

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 ?
0
0
0

LCS(ABCB, BDCAB)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

84

3/20/23

22

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3
0
0
0

LCS(ABCB, BDCAB)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

85

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

Where’s the
final answer?

86

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

Space requirements?

Running time?

87

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

Space requirements: Θ(nm)

Running time: Θ(nm)

88

3/20/23

23

The algorithm

89

The algorithm

Base case initialization

90

The algorithm

Fill in the matrix

91

The algorithm

92

3/20/23

24

The algorithm

93

The algorithm

94

Keeping track of the solution

Our LCS algorithm only calculated the length of the LCS
between X and Y

What if we wanted to know the actual sequence?

95

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 ?
0
0
0

LCS(ABCB, BDCAB)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

96

3/20/23

25

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3
0
0
0

LCS(ABCB, BDCAB)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

97

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 ?
0
0
0

LCS(ABCB, BDCABA)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

98

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0
0
0

LCS(ABCB, BDCABA)

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

99

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

How do we
generate the
solution from this?

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

100

3/20/23

26

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B Ai

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

We can follow the
arrows to generate
the solution

BCBA

î
í
ì

--
=--+

=
otherwise]1,[],,1[max(

 f]1,1[1
],[

jiLCSjiLCS
yxijiLCS

jiLCS ji

101

