

Admin

2

Assignment 4 and 5 back soon

Hashtables

What do you know/remember?

Hashtables

Constant time insertion and search (and deletion in some cases) for a large space of keys

Applications

- Does x belong to S?
- $\hfill\square$ I've found them very useful (go by many names, maps, dictionaries,
- ...)
- compilersdatabases

4

- search engines
- storing and retrieving non-sequential data
- save memory over an array

array must be as large as the universe of keys

Hashtables

Constant time insertion and search (and deletion in some cases) for a large space of keys

For this class, we'll just think of them as a collection of keys

For many applications/implementations, there is a value associated with the key, i.e., key/value pair (though lookup is still exclusively based on the key)

5

Why not just arrays aka

direct-address tables?

universe of keys - U

Array

11

Search average running time

Two cases:

- Key is not in the table
 must search all entries
 Θ(1)+ α)
 Key is in the table
- on average search half of the entries • $O(1 + \alpha)$

42

Hash functions

What makes a good hash function?

- $\hfill\square$ Approximates the assumption of simple uniform hashing
- $\hfill\square$ Deterministic h(x) should always return the same value
- Low cost if it is expensive to calculate the hash value (e.g. log n) then we don't gain anything by using a table

Challenge: we don't generally know the distribution of the keys

Frequently data tend to be clustered (e.g. similar strings, run-times, SSNs). A good hash function should spread these out across the table

43

Hash functions

What are some hash functions you've heard of before?

45

Divisio	n me	ethod	
h(k) = k m	od m		
	m	k	h(k)
	11	25	3
	11	1	1
	11	17	6
	13	133	3
	13	7	7
	13	25	12

1			8	1	00001	
6			8		10001	
3			0	.,	10001	
7						
12						
		47				

Division method

m k

8 25

Don't use a power of two. Why?

bin(k)

11001

h(k)

Don't u	se a power o	of two. Why	Ş
	m k	bin(k)	h(k)
	8 25	11001	1
	8 1	00001	1
	8 17	10001	1

m k A kA h(k) 3 15 0.618
3 15 0.618
3 23 0.618
3 100 0.618

Mult	iplico	ation I	methoo	ł
m	k	A	kA	h(k)
8	15	0.618	9.27	floor(0.27*8) = 2
8	23	0.618	14.214	floor(0.214*8) = 1
8	100	0.618	61.8	floor(0.8*8) = 6
$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$				

Multiplication method

Why a power of 2?

51

Book has other heuristics

 $h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$

 $A = (\sqrt{5} - 1)/2 = 0.6180339887$

Common choice is for m as a power of 2 and

53

Hash functions with open addressing

Hash function must define a $\ensuremath{\text{probe sequence}}$ which is the list of slots to examine when searching or inserting

The hash function takes an additional parameter i which is the number of collisions that have already occurred

The probe sequence ${\color{black} \textbf{must}}$ be a permutation of every hashtable entry. Why?

{ h(k,0), h(k,1), h(k,2), ..., h(k, m-1) } is a permutation of { 0, 1, 2, 3, ..., m-1 }

Open addressing: delete

Two options:

mark node as "deleted" (rather than null)

- modify search procedure to continue looking if a "deleted" node is seen
 - modify insert procedure to fill in "deleted" entries
 - increases search times
- □ if a lot of deleting will happen, use chaining

71

Quadratic probing $h(k,i) = (h(k) + c_1i + c_2i^2) \mod m$

Rather than a linear sequence, we probe based on a quadratic function

Problems:

- must pick constants and *m* so that we have a proper probe sequence
- if h(x) = h(y), then h(x,i) = h(y,i) for all i
- secondary clustering

79

Double hashing

Probe sequence is determined by a second hash function

 $h(k,i) = (h_1(k) + i(h_2(k))) \mod m$

Problem:

h₂(k) must visit all possible positions in the table

Running time of insert and search for open addressing

Depends on the hash function/probe sequence

Worst case?

O(n) – probe sequence visits every full entry first before finding an empty

81

Average number of probes $E[probes] = \frac{1}{1-\alpha}$ $\frac{\alpha \quad \text{Average number of searches}}{0.1 \quad 1/(1-.1) = 1.11}$ $0.25 \quad 1/(1-.25) = 1.33$ $0.5 \quad 1/(1-.5) = 2$ $0.75 \quad 1/(1-.75) = 4$ $0.9 \quad 1/(1-.9) = 10$ $0.95 \quad 1/(1-.95) = 20$ $0.99 \quad 1/(1-.99) = 100$

Course feedback

I love proving things and looking at the Math behind the concepts from CS62.

the group assignments

Honestly I just really like the little comics at the start of every homework

94

Course feedback

lectures are wayyy too fast, barely enough time to process things so it feels pointless to take notes; current course content is comprehensive and makes sense but it feels disorganized, like different content stitched together sort of so...

Having more examples, or going through the slides a bit slower

95

Course feedback

The homeworks are a lot of work and the mentors are super helpful but someone's even they don't have the solutions and that wastes hours of our time. I think homeworks can have more straight forward problems that show we understand things rather than problems that we always have to scavenge the internet and bug mentors for understandings.

Course feedback

During Class, could we have some more exercises along with the lecture contents?

96