
3/2/23

1

Greedy algorithms
David Kauchak

cs140
Spring 2023

1

Administrative
Assignment 5 due today at 9pm

Assignment 6 out later today and due next 
Friday 3/10 at 8pm

LC meetings this week

LC meetings next week?

2

Greedy algorithms
Algorithm that makes a local decision with the goal of 
creating a globally optimal solution

Method for solving problems where optimal solutions can 
be defined in terms of optimal solutions to sub-problems

3

Greedy vs. divide and conquer
Divide and conquer

To solve the general problem:

Break into sum number of sub problems, solve:

then possibly do a little work

4



3/2/23

2

Greedy vs. divide and conquer
Divide and conquer

To solve the general problem:

The solution to the general problem is solved with 
respect to solutions to sub-problems!

5

Greedy vs. divide and conquer
Greedy

To solve the general problem:

Pick a locally optimal solution and repeat

6

Greedy vs. divide and conquer
Greedy

To solve the general problem:

The solution to the general problem is solved with respect to 
solutions to sub-problems!

Slightly different than divide and conquer

7

Horn formula
A horn formula is a set of implications and 
negative clauses:

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

8



3/2/23

3

Goal
Given a horn formula, determine if the formula is 
satisfiable, i.e. an assignment of true/false to the variables 
that is consistent with all of the implications/causes

xÞ

yÞ

zux ÞÙ

zyx ÚÚ

u   x   y   z
0   1   1   0

9

A greedy solution?
xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w   0

x    0

y    0

z    0

10

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w   0

x    1

y    0

z    0

11

A greedy solution?
xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w   0

x    1

y    1

z    0

12



3/2/23

4

A greedy solution?

xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w   1

x    1

y    1

z    0

13

A greedy solution?
xÞ
yxÞ

wzx ÞÙ
yxw ÚÚwyx ÞÙ

xzyw ÞÙÙ

w   1

x    1

y    1

z    0

not satisfiable

14

A greedy solution

15

A greedy solution

set all variables of 
the implications of 
the form “Þx” to 
true

16



3/2/23

5

A greedy solution

if the all variables of 
the lhs of an 
implication are true, 
then set the rhs 
variable to true

17

A greedy solution

see if all of the 
negative clauses are 
satisfied

18

A greedy solution

How is this a greedy algorithm?

19

A greedy solution

How is this a greedy algorithm?

Make a greedy decision about 
which variables to set and then 
moves on

20



3/2/23

6

Correctness of greedy solution
Two parts:

l If our algorithm returns an assignment, is it a valid 
assignment?

l If our algorithm does not return an assignment, 
does an assignment exist?

21

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid 
assignment?

22

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid 
assignment?

explicitly check all 
negative clauses

23

Correctness of greedy solution
If our algorithm returns an assignment, is it a valid 
assignment?

don’t stop until all 
implications with all 
lhs elements true 
have rhs true

24



3/2/23

7

Correctness of greedy solution
If our algorithm does not return an 
assignment, does an assignment exist?

Our algorithm is 
“stingy”.  It only 
sets those variables 
that have to be true. 
All others remain 
false.

25

Correctness of greedy solution
If our algorithm does not return an 
assignment, does an assignment exist?

26

Running time?

?
n = number of 
variables

m = number of 
formulas

27

Running time?

O(nm)

n = number of 
variables

m = number of 
formulas

28



3/2/23

8

Data compression
Given a file containing some data of a fixed alphabet Σ
(e.g. A, B, C, D), we would like to pick a binary 
character code that minimizes the number of bits 
required to represent the data.

A C A D A A D B … 0010100100100  …

minimize the size of 
the encoded file

29

Compression algorithms

http://en.wikipedia.org/wiki/Lossless_data_compression

30

Simplifying assumption:
frequency only

Assume that we only have character 
frequency information for a file

A C A D A A D B …

=
Symbol Frequency

A
B
C
D

70
3

20
37

31

Fixed length code
Use ceil(log2|Σ|) bits for each character

A = 
B = 
C = 
D = 

32



3/2/23

9

Fixed length code
Use ceil(log2|Σ|) bits for each character

A = 00
B = 01
C = 10
D = 11

Symbol Frequency
A
B
C
D

70
3

20
37

How many bits to 
encode the file?

2 x 70 +
2 x 3 +
2 x 20 + 
2 x 37  =

260 bits

33

Fixed length code
Use ceil(log2|Σ|) bits for each character

A = 00
B = 01
C = 10
D = 11

Symbol Frequency
A
B
C
D

70
3

20
37

Can we do better?

2 x 70 +
2 x 3 +
2 x 20 + 
2 x 37  =

260 bits

34

Variable length code
What about:

A = 0
B = 01
C = 10
D = 1

Symbol Frequency
A
B
C
D

70
3

20
37

1 x 70 +
2 x 3 +
2 x 20 + 
1 x 37  =

153 bits How many bits to 
encode the file?

35

Decoding a file
A = 0
B = 01
C = 10
D = 1

010100011010

What characters does this 
sequence represent?

36



3/2/23

10

Decoding a file
A = 0
B = 01
C = 10
D = 1

010100011010

What characters does this 
sequence represent?

A D or B?

37

Variable length code
What about:

A = 0
B = 100
C = 101
D = 11

Symbol Frequency
A
B
C
D

70
3

20
37

Is it decodeable?

38

Variable length code
What about:

A = 0
B = 100
C = 101
D = 11

Symbol Frequency
A
B
C
D

70
3

20
37

How many bits to 
encode the file?

1 x 70 +
3 x 3 +
3 x 20 + 
2 x 37  =

213 bits
(18% reduction)

39

Prefix codes
A prefix code is a set of codes where no 
codeword is a prefix of any other codeword

A = 0
B = 100
C = 101
D = 11

A = 0
B = 01
C = 10
D = 1

40



3/2/23

11

Prefix tree
We can encode a prefix code using a full binary tree 
where each leaf represents an encoding of a symbol

A = 0
B = 100
C = 101
D = 11

A

B C

D

0 1

41

Decoding using a prefix tree
To decode, we traverse the graph until a leaf 
node is reached and output the symbol

A = 0
B = 100
C = 101
D = 11

A

B C

D

0 1

42

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

43

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B

44



3/2/23

12

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B  A

45

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B  A  D

46

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B  A  D C

47

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B  A  D C A

48



3/2/23

13

Decoding using a prefix tree
Traverse the graph until a leaf node is reached 
and output the symbol

A

B C

D

0 1
1000111010100

B  A  D C A B

49

Determining the cost of a file

A

B C

D

0 1Symbol Frequency
A
B
C
D

70
3

20
37

50

Determining the cost of a file

A

B C

D

0 1Symbol Frequency
A
B
C
D

70
3

20
37 70

3 20

37

å =
=

n

i i ifT
1

)depth()(cost

51

Determining the cost of a file

A

B C

D

0 1Symbol Frequency
A
B
C
D

70
3

20
37 70

3 20

3723

60

What if we label the internal nodes 
with the sum of the children?

52



3/2/23

14

Determining the cost of a file

A

B C

D

0 1Symbol Frequency
A
B
C
D

70
3

20
37 70

3 20

3723

60

Cost is equal to the sum of the 
internal nodes (excluding the root) 
and the leaf nodes

53

Determining the cost of a file

A

B C

D

0 1

70

3 20

3723

60

60 times we see a prefix that 
starts with a 1

of those, 37 times we see an 
additional 1

the remaining 23 times we see 
an additional 0

70 times we see a 0 by itself

of these, 20 times we see a last 1 
and 3 times a last 0

As we move down the tree, one bit 
gets read for every nonroot node

54

A greedy algorithm?
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes 
the number of bits? 

A

B C

D

0 1

Symbol Frequency
A
B
C
D

70
3

20
37

55

A greedy algorithm?
Given file frequencies, can we come up with a prefix-
free encoding (i.e. build a prefix tree) that minimizes 
the number of bits? 

56



3/2/23

15

Symbol Frequency
A
B
C
D

70
3

20
37

Heap

57

Symbol Frequency
A
B
C
D

70
3

20
37

Heap
B 3
C 20
D 37
A 70

58

Symbol Frequency
A
B
C
D

70
3

20
37

Heap
BC 23
D 37
A 70

B C

3 20

23

merging with this 
node will incur an 
additional cost of 23

59

Symbol Frequency
A
B
C
D

70
3

20
37

Heap
BCD 60
A 70

B C

3 20

23

D

37

60

60



3/2/23

16

Symbol Frequency
A
B
C
D

70
3

20
37

Heap
ABCD 130

B C

3 20

23

D

37

60

A

70

61

Symbol Frequency
A
B
C
D

70
3

20
37

What is the code?

B C

3 20

23

D

37

60

A

70

62

Symbol Frequency
A
B
C
D

70
3

20
37

What is the code?

B C

3 20

23

D

37

60

A

70
A: 1
B: 000
C: 001
D: 01

63

Is it correct?
The algorithm selects the symbols with the two 
smallest frequencies first (call them f1 and f2)

64



3/2/23

17

Is it correct?
The algorithm selects the symbols with the two smallest 
frequencies first (call them f1 and f2)

Consider a tree that did not do this (proof by contradiction):

f1

fi f2

Is it optimal?

65

Is it correct?
The algorithm selects the symbols with the two smallest 
frequencies first (call them f1 and f2)

Consider a tree that did not do this:

f1

fi f2

fi

f1 f2

- frequencies don’t change
- cost will decrease since 
f1 < fi

contradiction

å =
=

n

i i ifT
1

)depth()(cost

66

Runtime?

1 call to MakeHeap

2(n-1) calls ExtractMin

n-1 calls Insert

O(n log n)

67

Symbol Frequency
A
B
C
D
E

5
20
10
13
9

What is the tree?

What is the encoding?

How many bits to encode the file?

68



3/2/23

18

Non-optimal greedy algorithms
All the greedy algorithms we’ve looked at so far 
give the optimal answer

Some of the most common greedy algorithms 
generate good, but non-optimal solutions

l set cover
l clustering
l hill-climbing
l relaxation

69

Knapsack problems:  
Greedy or not?
0-1 Knapsack – A thief robbing a store finds n items 
worth v1, v2, .., vn dollars and weight w1, w2, …, wn

pounds, where vi and wi are integers.  The thief can carry 
at most W pounds in the knapsack.  Which items should 
the thief take if he wants to maximize value.

Fractional knapsack problem – Same as above, but the 
thief happens to be at the bulk section of the store and 
can carry fractional portions of the items.  For example, 
the thief could take 20% of item i for a weight of 0.2wi and 
a value of 0.2vi.

70

Course feedback

71

Course feedback

72



3/2/23

19

Course feedback

73

Course feedback
I love proving things and looking at the Math 
behind the concepts from CS62.

the group assignments

Honestly I just really like the little comics at the 
start of every homework

74

Course feedback
lectures are wayyy too fast, barely enough time 
to process things so it feels pointless to take 
notes; current course content is comprehensive 
and makes sense but it feels disorganized, like 
different content stitched together sort of so…

Having more examples, or going through the 
slides a bit slower

75

Course feedback
The homeworks are a lot of work and the 
mentors are super helpful but someone's even 
they don't have the solutions and that wastes 
hours of our time. I think homeworks can have 
more straight forward problems that show we 
understand things rather than problems that we 
always have to scavenge the internet and bug 
mentors for understandings.

76



3/2/23

20

Course feedback
During Class, could we have some more 
exercises along with the lecture contents?

77

Checkpoint 1

Mean/Median: 17.5 (83%)

78


