

Introductions

Dr. | Prof | Professor Dave | Kauchak

Pronouns: he/him/his

2

Meet your neighbors

What's your name?

- What year?
- What has been your favorite CS class?
- What's been your least favorite CS class?
- Why are you taking this class?

Algorithms

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." – Francis Sullivan

What is an algorithm?

4

Example algorithms

sort a list of numbers find a route from one place to another (cars, packet routing, phone routing, ...) find the longest common substring between two strings add two numbers microchip wiring/design (VLSI) solve sudoku cryptography compression (file, audio, video) spell checking pagerank classify a web page

5

6

Log pro	operties	
log _α x	$\mathbf{x} = \mathbf{a}^{b}$	
a raised to	what exponent is x?	
)		

Log properties	
$\log_{\alpha} \alpha = ?$	a raised to what exponent is <i>x</i> ?
$\log_{\alpha} x = ?$ if $x > \alpha$	
$\log_{\alpha} x = ?$ if $x < \alpha$	
greater than 1 less t	han 1 exactly 1

Log properties	
Which is bigger?	
1) log ₃ 2	
2) log ₄ 2	

Log properties

Which is bigger?

18

 $\log (a/b) = \log a - \log b$

1) $\log_3 4.5 = \log_3 9 - \log_3 2$

2) $\log_4 8 = \log_4 16 - \log_4 2$

Log properties
$$\log_{\alpha} \alpha = ?$$
 $\log_{a} b = \frac{\log b}{\log a}$ $\log_{\alpha} x = ?$ $if x > \alpha$ $\log_{\alpha} x = ?$ $if x < \alpha$ $\log_{\alpha} x = ?$ $if x < \alpha$ greater than 1less than 1exactly 1

Log properties	
Which is bigger?	$\log_a \mathbf{b} = \frac{\log b}{\log a}$
1) log ₃ 2	
2) log ₄ 2	

Exponent properties

$$a^{b} \cdot ac = a^{b+c}$$

 $a^{b} \cdot ac = \underline{a \cdot a \dots \cdot a}_{b \text{ times}} \cdot \underline{a \dots \cdot a}_{c \text{ times}}$

Exponent properties
$(ab)^c =$

Exponent properties

 $(ab)^c = a^c b^c$

34

35

Exponent properties

 $(a^{b})^{c} = a^{bc}$

37

38

Exponent properties $(a^b)^c = a^{bc}$ Which is bigger (x > 1)? $2^{2x} = (2^2)^x = 4^x$ 4^x

40

Pseudocode

A way to discuss how an algorithm works that is language agnostic and without being encumbered with actual implementation details.

Should give enough detail for a person to undersand, analyze and implement the algorithm.

41

Pseudocode examples

42

Pseudocode convections

array indices start at 1 not 0

we may use notation such as $^\infty,$ which, when translated to code, would be something like Integer.MAX VALUE

use shortcuts for simple function (e.g. swap) to make pseudocode simpler

we'll often use \leftarrow instead of = to avoid ambiguity

indentation specifies scope

Proofs

What is a proof?

A deductive argument showing a statement is true based on previous knowledge (axioms)

Why are they important/useful?

Allows us to be sure that something is true In algs: allow us to prove properties of algorithms

Proof techniques?
example/counterexample
enumeration
by cases
by inference (aka direct proof)
trivially
contrapositive
contradiction
induction (strong and weak)