9/30/22

Amortized Analysis
and Heaps Intro

Admin
Assignment 3 back soon (sorry for the delay!)

Assignment 4 due Sunday

. YY)
David Kauchak | eeee
o000
cs140 |eoo
[X J
Fall 2022 | e
Extensible array s i

Sequential locations in memory in linear order

Elements are accessed via index
o Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e.
addToBack)

o ArrayList or Vector in Java

o lists in Python, perl, Ruby, ...

How can we do it?

Extensible array

Idea 1: Each time we call add, create a new array one
element large, copy the data over and add the element

Running time: ©(n)

9/30/22

Extensible array s

o0
[(TTTTTTITTTTTTITIT] :
Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

allocated for extra space for
actual array calls to add - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Running time: (1) Problems?
.) . 4
Extensible array sese Extensible array ses:

Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory |deas?

[TTTTTTTTT Il :
Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

2
I

20
0

9/30/22

Extensible array 3

[(TTTTTTITTTTTTITIT] :
Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

[(TTTITT I I TITIT]
L
T I Y I I TR

Running time: ©O(n)

Extensible array 33

[T T I TTTITTTITITT] :
Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

How much extra memory
should we allocate?

Challenge: most of the calls to add will be O(1)

How else might we talk about runtime?

What is the average running time of add in the
worst case?

o Note this is different than the average-case running
time

9 10
Extensible array
IEEEEEEEEEEEEEE | Amortized analysis "

What does “amortize” mean?
am-or-tized am-or-tiz:ing

Definition of AMORTIZE 2+1/ HELike

1 :to pay off (as a mortgage) gradually usually by periodic
payments of principal and interest or by payments to a
sinking fund

N

i to gradually reduce or write off the cost or value of (as an
asset) <amortize goodwill> <amortize machinery>

— am-or-tiz-able ¢) adjective

11

12

9/30/22

What are the costs?

Insertion: 1 2 34567 8 9 10
size: 12448888 1616

cost:

What are the costs?

Insertion: 1 2 34567 89 10
size: 12448888 1616
costt 1231511191

17

18

What are the costs?

Insertion: 123456789 10

size: 124488881616
basiccost: 1111111111
doublecost: 0 1204 00080

What are the costs?

Insertion: 1234567 89 10

size: 12448888 1616
basiccost: 1111111111
doublecost: 0 120400080

What is the sum of basic cost for n operations?

What is the sum of the copy cost for n operations?

19

20

9/30/22

Amortized analysis $

More generally:

total_cost(n) = basic_cost(n) + double_cost(n)

— 1

basic_cost(n) =n double_cost(n)=1+2+4+8+...+n= 2n

total_cost(n) = 3n over n operations:

amortized O(1)

Amortized analysis vs.
worse case :

What is the worse case of add?
o Still O(n)

¢ [f you have an application that needs it to be O(1), this
implementation will not work!

amortized analysis give you the cost of n
operations (i.e. average cost) not the cost of any
individual operation

21

22

Extensible arrays :

What if instead of doubling the array, we add
instead increase the array by a fixed amount (call it
k) each time

Is the amortized run-time still O(1)?
e No!
o Why?

Amortized analysis :
Consider the cost of n insertions for some constant k

total_cost(n) = basic_cost(n) + double_cost(n)

l

basic_cost(n) = O(n) double_cost(n) =k+2k+3k+4k+5k+...+n

23

24

9/30/22

Amortized analysis $

Consider the cost of n insertions for some constant k
total_cost(n) = O(n) + O(n*)
=0(n*)

amortized O(n)!

Accounting method

Each operation has an amount we charge to accomplish it (this is really
the run-time for this operation)

We deduct from that charge the actual cost of the operation
If there is anything left over, put it in the bank
An operation may also use the bank to offset the cost of the operation

Key idea: charge more for low-cost operations and save that up to
offset the cost of expensive operations

25 26
i
Insertion: 123456789 10 Insertion: 1234567 89 10

size: 12448888 1616 size: 12448888 1616

costt 1231511191 costt 1231511191

bank: bank:

How much should we pay for each insert? Try insert: 2

27 28

9/30/22

Insertion: |1 345678910
size:|12 448888 1616
cost:]11231511191

bank:

Try insert: 2

How much is left?

Insertion: |1 345678910
size:|112 4 488 88 1616
cost:|11123 1511191

bank:| 1

Try insert: 2

29

30

Insertion: 1(123 4567 89 10
size: 1|24 4 8 8 8 8 1616
cost: 12131511191
bank: 1

Try insert: 2

How much is left?

Insertion: 1|12 34567 89 10
size: 1/1214 4 8 8 8 8 1616
cost: 112131511191
bank: 1| 1

Try insert: 2

31

32

9/30/22

Insertion: 1 2|34 567 89 10
size: 1 2|44 8 8 8 8 1616
costt 1 2|311511191
bank: 1 1/ 0

Try insert: 2

Insertion: 1 2 3 |4 678910
size: 124148888 1616
cost: 1 2 31 171191

bank: 1 1 01

Try insert: 2

33

34
i
Insertion: 1 2 3 4|56 7 8 9 10 Insertion: 1 2 3 4567 8 9 10
size: 124 4(8|8 8 8 1616 size: 124 4|/88 88 1616
cost: 1231511191 cost: 1231511191
bank: 1 1 01 bank: 1 1 01
Try insert: 2 Try insert: 2
How much is left? -2l
35

36

9/30/22

Insertion: 123456789 10
size: 12448888 1616
costt 1231511191
bank:

Try insert: ??

Insertion: |1 345678910
size:|12 448888 1616
cost:/[1231511191
bank:

Try insert: 3

How much is left?

37 38
Insertion: |1 345678910 Insertion: 11213 4567 89 10
size:|124 48888 1616 size: 11214 4 8 8 8 8 1616
cost:][1231511191 cost: 112131511191
bank:| 2 bank: 2 3
Try insert: 3 Try insert: 3
39 40

9/30/22

Insertion: 1 2|34 567 89 10
size: 1 2|44 8 8 8 8 1616
costt 1 2|311511191
bank: 2 3|3

Try insert: 3

Insertion: 1 2 3|/4|56 7 8 9 10
size: 1 2 4/4|8 8 8 8 1616
costt 12 3[{1151 1191
bank: 2 3

Try insert: 3

41 42
Insertion: 1 2 3(4|56 7 8 9 10 Insertion: 1 2 3456 7 89|10
size: 1 2 4/4(8 8 8 8 1616 size: 1244888 8(1616
cost: 12 3/1(511191 costt 1231511191
bank: 2 3 35 bank: 2 3353579
Try insert: 3 Try insert: 3
43 44

10

9/30/22

Insertion: 1 2 3456 7 89|10 Insertion: 1 2 3456 7 89|10

size: 1244888 81616 size: 124488881616

costt 1231511191 costt 1231511191

bank: 2 3 3535 79|3 bank: 2 33535793

Try insert: 3 Try insert: 3

Will this work??

45 46

i Accounting method i

Insert pay 3 = O(1)!
Insertion: 1 2 34567 89 10

size: 12448888 1616 Particularly useful when there are multiple
costt 1231511191 operations

bank: 2 3 353579
L . l'l T J
. last copy 1: pay for our operation
. happened here
Try insert: 3 X Getting ready for the copy:
1: pay for our copy

1: pay to copy from an item
first half

47 48

11

9/30/22

[X.d
[X]
L]
4
Another set data structure Another set data structure H
We want to support fast lookup and insertion (i.e. faster Idea: store data in a collection of arrays
than linear) e array i has size 2
e an array is either full or empty (never partially full)
Arrays can easily made to be fast for one or the other « each array is stored in sorted order
o fast search: keep list sorted o no relationshio between arr.
O(n) insert o relationship between arrays
O(log n) search
o fastinsert: extensible array
O(1) insert (amortized)
O(n) search
49 50
o000 000
o000 o000
T T
Another set data structure : Another set data structure :
Which arrays are full and empty are based on the number of elements Ao: [5]
« specifically, binary representation of the number of elements As [4, 8]
o 4items = 100 = A2-full, A1-empty, Ac-empty Azi empty

o 11 items = 1011 = As-full, A2-empty, A1-full, Ao-full
Ao: [5]
Ar[4, 8]
Az empty
Asi[2, 6,9, 12, 13, 16, 20, 25]

Lookup: binary search through each array
e Worse case runtime?

As1[2,6,9, 12,13, 16, 20, 25]

Lookup: binary search through each array

Worse case: all arrays are full
o number of arrays = number of digits = log n
o binary search cost for each array = O(log n)
e O(log nlog n)

51

52

12

9/30/22

Another set data structure

Insert(A, item)

o startingati=0

o current = [item]

o aslong as the level i is full
merge current with Ai using merge procedure
store to current
Ai = empty
I++

e A =current

Insert 5

Ao: empty

Insert

o startingati=0

o current = [item]

o aslong as the level i is full
merge current with A using merge
procedure
store to current
Ai = empty
i++

e Ai=current

53 54
Insert 5 Insert 6
Ao: [5] Insert Ao: [9] Insert
o startingati=0 o startingati=0
« current = [item] o current = [item]
o aslong as the level i is full o aslong as the level i is full
merge current with Ai using merge merge current with A; using merge
rocedure rocedure
:tore to current :tore to current
Ai = empty Ai = empty
i+ i+
e Ai=current e Ai=current
55 56

13

Insert 6

Ao: empty
Az [5, 6]

Insert
o
o

starting ati=0
current = [item]

as long as the level i is full
merge current with Ai using merge

Insert 12

Ao: empty
A [5, 6]

Insert
o startingati=0
o current = [item]

o aslong as the level i is full
merge current with A using merge

procedure procedure
store to current store to current
Ai = empty Ai = empty
i++ ++

o Ai=current e Ai=current

57 58
Insert 12 Insert 4
ﬁof [’:1')2]6 Insert ﬁo [;213 Insert
1'[’] o startingati=0 1'[’] o startingati=0

current = [item]
as long as the level i is full
merge current with Ai using merge
procedure
store to current
Ai = empty
i++
Ai = current

o current = [item]
o aslong as the level i is full
merge current with A; using merge
procedure
store to current
Ai = empty
i++
e Ai=current

59

60

9/30/22

14

9/30/22

Insert 4

Ao: empty
Aq: empty
Az [4,5,6,12]

Insert

starting ati=0
current = [item]
as long as the level i is full

merge current with Ai using merge

Insert 23

Ao: empty
Aq: empty
Az [4,5,6,12]

Insert
o startingati=0
o current = [item]

o aslong as the level i is full
merge current with A using merge

procedure procedure
store to current store to current
Ai = empty Ai = empty
o Ai=current e Ai=current
61 62
Insert 23 Another set data structure

Ao: [23] Insert Insert

Aq: empty o startingati=0 o startingati=0

A2 [4,5,6,12] « current = fitem] o current = [item]

as long as the level i is full

merge current with Ai using merge
procedure

store to current

Ai = empty

i++

Ai = current

o aslong as the level i is full
merge current with Ai using merge procedure
store to current

Ai = empty
i++
e A =current

running time?

63

64

15

9/30/22

Insert running time
Worst case

e merge at each level
e 2+4+8+..+n/2+n=0(n)

There are many insertions that won'’t fall into this
worse case

What is the amortized worse case for insertion?

insert: amortized analysis

Consider inserting n numbers

how many times will A, be empty?

e how many times will we need to merge with A,?
e how many times will we need to merge with A;?
e how many times will we need to merge with A,?

o how many times will we need to merge with A ,?

65 66
. . . o0 . . .
insert: amortized analysis : insert: amortized analysis
Consider inserting n numbers times e Consider inserting n numbers times cost

e how many times will A, be empty? n/2 e how many times will A, be empty? n/2 o(1)
¢ how many times will we need to merge with A,? n/2 e how many times will we need to merge with A,? n/2 2
¢ how many times will we need to merge with A;? n/4 e how many times will we need to merge with A;? n/4 4
¢ how many times will we need to merge with A,? n/8 e how many times will we need to merge with A,? n/8 8

e how many times will we need to merge with Ag,? 1

cost of each of these steps?

e how many times will we need to merge with A ,?

total cost:

1

67

68

16

9/30/22

Y 4
i i
insert: amortized analysis : Binary heap :
e Consider inserting n numbers times cost
e how many times will A, be empty? n/2 O(1)
e how many times will we need to merge with A;? n/2 2
e how many times will we need to merge with A;? n/4 4
e how many times will we need to merge with A,? n/8 8
° ‘h.c.>w many times will we need to merge with Ag,? 1 n
total cost: log n levels * O(n) each level
O(n log n) cost for n inserts
O(log n) amortized cost!
69 70
i i
Binary heap : Binary heap - operations :

A binary tree where the value of a parent is greater
than or equal to the value of its children

Additional restriction: all levels of the tree are
complete except the last

Max heap vs. min heap

Maximum(S) - return the largest element in the set

ExtractMax(S) — Return and remove the largest element in
the set

Insert(S, val) —insert val into the set

IncreaseElement(S, x, val) — increase the value of element
x to val

BuildHeap(A) — build a heap from an array of elements

71

72

17

9/30/22

Binary heap

How can we represent a heap?

Binary heap - references :
Il nodes i i
Zhggpe:r;n [@ parent 2 child
themselves \

heaps complete tree

N

level does not

5
Y:§

indicate size
73 74
. 3T Binary heap - array sset
Binary heap - array : :
: [16[1a[10[8] 7[o[3] 2[a[+] [[| []
PARENT(2)
return |i/2] 123 45678910
. PARENT(7)
LEFT(Z) return |i/2]
return 2
LEFT(4)
return 2i
RIGHT(%)
return 2; + 1 RIGHT(i)
return 2 +1
75 76

18

9/30/22

Binary heap - array 3 Binary heap - array sset
12 3 45 6 7 8 9 10 12 3 456 7 8 9 10
PARENT(d) Left child of A[3]? PARENT(i) Left child of A[3]?
return |i/2] return |i/2] »3=6
LEFT(7) LEFT(2)
return 2i return 2i
RIGHT (i) RIGHT(3)
return 2i + 1 return 2i +1
77 78
eseo e
Binary heap - array (3 Binary heap - array 3

s o]l 43T 1111

12 3 45 6 7 8 9 10

PARENT(3) Parent of A[8]?

return [i/2]

LEFT(i)
return 2i

RIGHT(4)
return 2i + 1

CECOGEOPOU RN

12 3 4567 8 9 10

Parent of A[8]?

PARENT(%)
return [i/2]

LEFT(4)
return 2i

RIGHT(3)
return 2; + 1

79

80

19

9/30/22

Binary heap - array

[16[14[10] 8] 7[9] 3] 2] 4] 1] |

172 3 45 6 7 8 9 10

bbb

Identify the valid heaps

[15,12,3,11,10,2,1,7, 8] (16)

[20, 18, 10, 17, 16, 15, 9, 14, 13]

81 82
Heaps i Heaps i

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
BuiLp-HEAP O(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn)
UNION O(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Should you always use a Fibonacci heap?

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
BuiLD-HEAP o(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn)
UNION o(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

» Extract-Max and Delete are O(n) worst case
» Constants can be large on some of the operations
» Complicated to implement

83

84

20

9/30/22

Heaps

Binary heap Binomial heap Fibonacci heap

BUICD-TTEAT o) o) Oy
INSERT O(logn) O(logn) o(1)
AXTMUM oty Ottogm) 15/e9)
UNION O(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])
Can we do better?

Number of Students
o r MW e w e

Average (mean) grade
Median grade
Standard deviation

Grade Distribution

Percentage Scored
16.63
16.25
426

85

86

21

