
9/27/22

1

BINARY SEARCH TREES
David Kauchak
CS 140 – Spring 2022

1

Number guessing game

I’m thinking of a number between 1 and n

You are trying to guess the answer

For each guess, I’ll tell you “correct”, “higher” or “lower”

Describe an algorithm that minimizes the number of guesses

2

Binary Search Trees

3

Binary Search Trees

BST – A binary tree where a parent’s value is greater than all
values in the left subtree and less than or equal to all the values in
the right subtree

and the left and right children are also binary search trees

Why not?

leftTree(i)< i ≤ rightTree(i)

leftTree(i) ≤ i ≤ rightTree(i)

Ambiguous about where elements that are equal would reside

4

9/27/22

2

Example

12

8

5 9 20

14

Can be implemented with with
references or an array

5

What else can we conclude?

The smallest element is the left-
most element

The largest element is the right-
most element

12

8

5 9 20

14

leftTree(i)< i ≤ rightTree(i)

6

Another example: the solo tree

12

7

Another example: the twig

12

8

5

1

8

9/27/22

3

Operations

Search(T,k) – Does value k exist in tree T
Insert(T,k) – Insert value k into tree T
Delete(T,x) – Delete node x from tree T
Minimum(T) – What is the smallest value in the tree?
Maximum(T) – What is the largest value in the tree?
Successor(T,x) – What is the next element in sorted order after x
Predecessor(T,x) – What is the previous element in sorted order of x

Median(T) – return the median of the values in tree T

9

Search

How do we find an element?

10

Finding an element

Search(T, 9)
12

8

5 9 20

14

11

Finding an element

12

8

5 9 20

14

Search(T, 9)

12

9/27/22

4

Finding an element

12

8

5 9 20

14

9 > 12?

Search(T, 9)

13

Finding an element

12

8

5 9 20

14

Search(T, 9)

14

Finding an element

12

8

5 9 20

14

Search(T, 9)

15

Finding an element

12

8

5 9 20

14

Search(T, 9)

16

9/27/22

5

Finding an element

Search(T, 13) 12

8

5 9 20

14

17

Finding an element

12

8

5 9 20

14

Search(T, 13)

18

Finding an element

12

8

5 9 20

14

?

Search(T, 13)

19

Iterative search

20

9/27/22

6

Is BSTSearch correct?

leftTree(i)< i ≤ rightTree(i)

21

Running time of BSTSearch

Worst case?
l θ(height of the tree)

Average case?
l O(height of the tree)

Best case?
l O(1)

22

Height of the tree

Worst case height?
¤ n-1

¤ “the twig”

Best case height?
¤ log2𝑛
¤ complete (or near complete) binary tree

Average case height?
¤ Depends on two things:

n the data
n how we build the tree!

23

Insertion

24

9/27/22

7

Insertion

Similar to search

25

Insertion

Similar to search

Find the correct
location in the tree

26

Insertion

keeps track of the
previous node we
visited so when we fall
off the tree, we know

27

Insertion

add node onto the
bottom of the tree

28

9/27/22

8

Correctness?

maintain BST
property

29

Correctness

What happens
if it is a
duplicate?

30

Inserting duplicate

Insert(T, 14) 12

8

5 9 20

14

leftTree(i)< i ≤ rightTree(i)

31

Inserting duplicate

Insert(T, 14) 12

8

5 9 20

14

leftTree(i)< i ≤ rightTree(i)

14

32

9/27/22

9

Running time

O(height of the tree)

33

Running time

Why not
Θ(height of the tree)?

O(height of the tree)

34

Running time

12

8

5

1

Insert(T, 15)

35

Height of the tree

Worst case: “the twig” – When will this happen?

36

9/27/22

10

Height of the tree

Best case: “complete” – When will this happen?

37

Height of the tree

Average case for random data?

Randomly inserting data into
a BST generates a tree on
average that is O(log n)

38

Visiting all nodes

In sorted order

12

8

5 9 20

14

39

Visiting all nodes

12

8

5 9 20

14

5In sorted order

40

9/27/22

11

Visiting all nodes

12

8

5 9 20

14

5, 8In sorted order

41

Visiting all nodes

12

8

5 9 20

14

5, 8, 9In sorted order

42

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12In sorted order

43

Visiting all nodes

What’s happening?

12

8

5 9 20

14

5, 8, 9, 12

44

9/27/22

12

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12, 14In sorted order

45

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12, 14, 20In sorted order

46

Visiting all nodes in order

47

Visiting all nodes in order

any operation

48

9/27/22

13

Is it correct?

Does it print out all of the nodes in sorted order?

leftTree(i)< i ≤ rightTree(i)

49

What about?

51

Preorder traversal

12

8

5 9 20

14

12, 8, 5, 9, 14, 20

How is this useful?
Tree copying: insert in to new
tree in preorder

prefix notation: (2+3)*4 ->
* + 2 3 4

52

What about?

53

9/27/22

14

Postorder traversal

12

8

5 9 20

14

5, 9, 8, 20, 14, 12

How is this useful?
postfix notation: (2+3)*4
-> 4 3 2 + *

?

54

Min/Max

12

8

5 9 20

14

55

Running time of min/max?

O(height of the tree)

56

Successor and predecessor

12

8

5 9 20

14

13

Predecessor(12)? 9

57

9/27/22

15

Successor and predecessor

12

8

5 9 20

14

13

Predecessor in general? largest node of all those
smaller than this node

rightmost element of
the left subtree

58

Successor

12

8

5 9 20

14

13

Successor(12)? 13

59

Successor

12

8

5 9 20

14

13

Successor in general? smallest node of all those
larger than this node

leftmost element of the
right subtree

60

Successor

12

8

20

14

13

What if the node
doesn’t have a right
subtree?

smallest node of all those
larger than this node

leftmost element of the
right subtree

95

61

9/27/22

16

Successor

12

8

5 20

14

13

What if the node
doesn’t have a right
subtree?

node is the largest

the successor is the node
that has x as a
predecessor

9

62

Successor

12

8

5 20

14

13

successor is the node
that has x as a
predecessor

9

63

Successor

12

8

5 20

14

13

successor is the node
that has x as a
predecessor

9

64

Successor

12

8

5 20

14

13

successor is the node
that has x as a
predecessor

9

65

9/27/22

17

Successor

12

8

5 20

14

13

successor is the node
that has x as a
predecessor

9

keep going up until
we’re no longer a
right child

66

Successor

67

Successor

if we have a right
subtree, return the
smallest of the right
subtree

68

Successor

find the node that x is
the predecessor of

keep going up until
we’re no longer a
right child

69

9/27/22

18

Successor running time

O(height of the tree)

70

Deletion

12

8

5 9 20

14

13

Three cases!

71

Deletion: case 1

No children

Just delete the node
12

8

5 9 20

14

13

17

72

Deletion: case 1

12

8

5 20

14

13

17

No children

Just delete the node

73

9/27/22

19

Deletion: case 2

One child

Splice out the node

12

8

5 20

14

13

17

74

Deletion: case 2

12

5

20

14

13

17

One child

Splice out the node

75

Deletion: case 3

Two children

Replace x with it’s successor

12

5

20

14

13

17

76

Deletion: case 3

12

5

20

17

13

Two children

Replace x with it’s successor

77

9/27/22

20

Deletion: case 3

Two children

Will we always have a successor?

Why successor?
l Larger than the left subtree
l Less than or equal to right subtree

78

Height of the tree

Most of the operations take time
O(height of the tree)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:
¤ We can’t always insure random data
¤ What happens when we delete nodes and insert others

after building a tree?

79

Balanced trees

Make sure that the trees remain balanced!
¤ Red-black trees
¤ AVL trees
¤ 2-3-4 trees
¤ …

B-trees

80

Red-black trees: BST (plus some)

https://en.wikipedia.org/wiki/Red–black_tree

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to descendant leaves

contain the same number of black nodes.

81

9/27/22

21

Red-black trees: BST (plus some)

ℎ(𝑥): height of node 𝑥: number of edges in longest path
from 𝑥 to a leaf

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to descendant leaves

contain the same number of black nodes.

82

Red-black trees: BST (plus some)

ℎ(𝑥): height of node 𝑥: number of edges in longest path
from 𝑥 to a leaf

What is the height of the root node?

83

Red-black trees: BST (plus some)

ℎ(𝑥): height of node 𝑥: number of edges in longest path
from 𝑥 to a leaf

4

84

Red-black trees: BST (plus some)

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on a
path from 𝑥 to leaf (not including 𝑥)

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to descendant leaves

contain the same number of black nodes.

Why don’t we say ”path with the most…”?

85

9/27/22

22

Red-black trees: BST (plus some)

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on a
path from 𝑥 to leaf (not including 𝑥)

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to descendant leaves

contain the same number of black nodes.

Why don’t we say ”path with the most…”?

86

Red-black trees: BST (plus some)

What is the black height of the root node?

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on a
path from 𝑥 to leaf (not including 𝑥)

87

Red-black trees: BST (plus some)

2

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on a
path from 𝑥 to leaf (not including 𝑥)

88

Bounding the height

Claim 1: For every node 𝑥, 𝑏ℎ 𝑥 ≥ ℎ(𝑥)/2

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to

descendant leaves contain the same number of
black nodes.

ℎ(𝑥): height of node 𝑥: number of edges in
longest path from 𝑥 to a leaf

𝑏ℎ(𝑥): black height of node 𝑥: number of
black nodes on a path from 𝑥 to leaf (not
including 𝑥)

Proof?

89

9/27/22

23

Bounding the height

Claim 1: For every node 𝑥, 𝑏ℎ 𝑥 ≥ ℎ(𝑥)/2

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to

descendant leaves contain the same number of
black nodes.

ℎ(𝑥): height of node 𝑥: number of edges in
longest path from 𝑥 to a leaf

𝑏ℎ(𝑥): black height of node 𝑥: number of
black nodes on a path from 𝑥 to leaf (not
including 𝑥)

Worst case: nodes alternate red/black
- root is black
- leaf is black

In terms of h(x): How many black nodes are
there on this path?

90

Bounding the height

Claim 1: For every node 𝑥, 𝑏ℎ 𝑥 ≥ ℎ(𝑥)/2

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to

descendant leaves contain the same number of
black nodes.

ℎ(𝑥): height of node 𝑥: number of edges in
longest path from 𝑥 to a leaf

𝑏ℎ(𝑥): black height of node 𝑥: number of
black nodes on a path from 𝑥 to leaf (not
including 𝑥)

minimum black nodes on path: !(#)% + 1

bℎ 𝑥 ≥
ℎ(𝑥)
2

𝑏ℎ does NOT include x, i.e., the root in this case

91

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Proof?

92

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Base case:

93

9/27/22

24

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Base case: leaf (ℎ(𝑥) = 0)

𝑏ℎ 𝑥 = 0

2& − 1 = 0

94

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on
a path from 𝑥 to leaf (not including 𝑥)

What is 𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) wrt 𝑏ℎ(𝑥)?

95

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

𝑏ℎ(𝑥): black height of node 𝑥: number of black nodes on
a path from 𝑥 to leaf (not including 𝑥)

x is red: 𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) = 𝑏ℎ(𝑥) − 1
x is black: 𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) = 𝑏ℎ(𝑥) 𝑜𝑟 𝑏ℎ(𝑥) − 1

96

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

x is red: 𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) = 𝑏ℎ(𝑥) − 1
x is black: 𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) = 𝑏ℎ(𝑥) 𝑜𝑟 𝑏ℎ(𝑥) − 1

𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) ≥ 𝑏ℎ(𝑥) − 1

97

9/27/22

25

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) ≥ 𝑏ℎ(𝑥) − 1

𝑥
How many (internal
nodes are in this
tree (at least)?

98

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) ≥ 𝑏ℎ(𝑥) − 1

𝑥

2'! #)* − 12'! #)* − 1

1

99

Bounding the height

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) − 1 internal (non-leaf) nodes

Inductive case: ℎ(𝑥) > 0

IH: 2'!(() − 1 for all y that are subtrees of x

𝑏ℎ(𝑐ℎ𝑖𝑙𝑑(𝑥)) ≥ 𝑏ℎ(𝑥) − 1

(2'! #)*−1) + (2'! #)* − 1) + 1 = 2'! # − 1

100

Bounding the height (almost there!)

Claim 1: For every node 𝑥, 𝑏ℎ 𝑥 ≤ (*
,

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) −1 internal (non-leaf) nodes

How does this help us?

101

9/27/22

26

Bounding the height

Claim 1: For every node 𝑥, 𝑏ℎ 𝑥 ≥ (*
,

Claim 2: The subtree rooted at any node 𝑥 contains at
least 2'((*) −1 internal (non-leaf) nodes

𝑛 ≥ 2'!(#) − 1 Claim 2

𝑛 ≥ 2!(#)/% − 1 Claim 1

𝑛 + 1 ≥ 2!(#)/%

ℎ 𝑥 ≤ 2log(𝑛 + 1)

math

math

What does this mean?

102

Bounding the height

1. every node is either red or black
2. root is black
3. leaves (NIL) are black
4. if a node is red, both children are black
5. for every node, all paths from the node to

descendant leaves contain the same number of
black nodes.

If we can maintain these
properties: height 𝑂(log𝑛)

Search
Insert
Delete
Maximum

These all become 𝑂(log𝑛)

103

Can it be done?

https://en.wikipedia.org/wiki/Tree_rotation#/media/File:Tree_rotation.png

Can we maintain the red-black tree properties without
making insertion and deletion more expensive?

104

A quick example

https://www.youtube.com/watch?v=vDHFF4wjWYU

105

https://www.youtube.com/watch?v=vDHFF4wjWYU

