Binary Search Trees

3

1

Number guessing game

I'm thinking of a number between 1 and n

You are trying to guess the answer

For each guess, l'll tell you "correct", "higher" or "lower"

Describe an algorithm that minimizes the number of guesses

2

Binary Search Trees

BST - A binary tree where a parent's value is greater than all values in the left subtree and less than or equal to all the values in the right subtree

$$
\operatorname{leftTree}(i)<i \leq \operatorname{rightTree}(i)
$$

and the left and right children are also binary search trees

Why not?

$$
\operatorname{left} \operatorname{Tree}(i) \leq i \leq \text { rightTree }(i)
$$

[^0]4

7

9

11

Search

How do we find an element?

```
BSTSEARCH}(x,k
if x=null or }k=
            return x
    elseif k<x
                return BSTSEARCh(LEfT(x), k)
    else
        return BSTSEARCH(Right(x), k)
```

 10

12

13

15

14

16

17

19

18

Iterative search
```IterativeBSTSearch \((x, k)\) while \(x \neq\) null and \(k \neq x\) if \(k<x\) \(x \leftarrow \operatorname{LEFT}(x)\) else \(x \leftarrow \operatorname{RIGHT}(x)\) return \(x\) BSTSEARCH \((x, k)\) if \(x=\) null or \(k=x\) return x elseif \(k<x\) return \(\operatorname{BSTSEARCh}(\operatorname{Left}(\mathrm{x}), \mathrm{k})\) else return \(\operatorname{BSTSEARCH}(\operatorname{Right}(x), \mathrm{k})\)```

20

$$
\text { leftTree }(i)<i \leq \operatorname{rightTree}(i)
$$

21

Height of the tree

Worst case height?

- n-1
- "the twig"

Best case height?

- $\left\lfloor\log _{2} n\right\rfloor$
- complete (or near complete) binary tree

Average case height?

- Depends on two things:
- the data
- how we build the tree!

23


22
.

Insertion

BSTInsert $(T, x)$
if $\operatorname{Root}(T)=$ null
$\operatorname{ROOT}(T) \leftarrow x$
else
$y \leftarrow \operatorname{Root}(T$
while $y \neq n u l l$

$$
\text { prev } \leftarrow y
$$

$$
\text { if } x<y
$$

else
$y \leftarrow \operatorname{RIGHT}(y)$
$\operatorname{PaRENT}(x) \leftarrow$ prev
if $x<p r e v$
$\operatorname{Left}(p r e v) \leftarrow x$
else
RIGHT $($ prev $) \leftarrow x$

24


25

## Insertion

```
BSTInSERT(T,x)
 if Root(T)=null
 Rоот(T)}\leftarrow
 else
 y\leftarrow\operatorname{ROOT}(T)
 while }y\not=\mathrm{ null
 prey }\leftarrow
 if }x<
 y\leftarrow\operatorname{LeFT}(y)
 of the
 previous node we
 visited so when we fal
 off the tree, we know
 else
 y\leftarrow\operatorname{RIGHT}(y)
 PaRENT}(x)\leftarrowpre
 if }x<\mathrm{ prev
 LEFT(prev)}\leftarrow
 else
 RIGHT(prev)}\leftarrow
```



Insertion	
BSTInsert $(T, x)$	
1 if $\operatorname{Root}(T)=$ null	
$2 \quad \operatorname{Root}(T) \leftarrow x$	
$\begin{aligned} & 3 \text { else } \quad y \leftarrow \operatorname{Root}(T) \text { } \\ & 4 \end{aligned} \quad$	Similar to search
5 while $y \neq$ null	
$6 \quad$ prev $\leftarrow y$	Find the correct
78	location in the tree
$\begin{array}{lll} 8 & \text { else } & y \leftarrow \operatorname{LEFT}(y) \\ 9 & \end{array}$	
$10 \quad y \leftarrow \operatorname{Right}(y)$	
$11 \quad \operatorname{Parent}(x) \leftarrow$ prev	
12 if $x<$ prev	
$13 \quad \operatorname{Left}($ prev $) \leftarrow x$	
14 else	
15 Right (prev) $\leftarrow x$	

26

Insertion
$\operatorname{BSTInSERT}(T, x)$
if $\operatorname{Root}(T)=$ null
$\operatorname{ROOt}(T) \leftarrow x$
else
$y \leftarrow \operatorname{Root}(T)$
while $y \neq$ null prev $\leftarrow y$
if $x<y \quad$ add node onto the bottom of the tree
$\frac{y \leftarrow \operatorname{RIGHT}(y)}{\operatorname{PaRENT}(x) \leftarrow \text { prev }}$
if $x<$ prev
$\operatorname{LEFT}(p r e v) \leftarrow x$
else
RIGHT $(p r e v) \leftarrow x$
$\square$
28


29


31


30


32


33


35


34

## Height of the tree

Worst case: "the twig" - When will this happen?
$\operatorname{BSTINSERT}(T, x)$

$$
\begin{aligned}
& \text { if } \operatorname{Root}(T)=\text { null } \\
& \operatorname{Root}(T) \leftarrow x \\
& y \leftarrow \operatorname{Root}(T) \\
& \text { while } y \neq \text { null } \\
& \begin{array}{l}
\text { prev } \leftarrow y \\
\text { if } x<y
\end{array} \\
& \text { if } x<y \\
& \text { else } \\
& \operatorname{PaRENT}(x) \leftarrow \text { prev } \quad y \leftarrow \operatorname{Right}(y) \\
& \text { if } x<\text { prev } \\
& \operatorname{LEFT}(p r e v) \leftarrow x \\
& \text { else } \\
& \operatorname{RIGHT}(\text { prev }) \leftarrow x
\end{aligned}
$$

36


37


39


38


40


41


43



45

47
Visiting all nodes in order
InorderTreeWalk $(x)$
1
1 if $x \neq$ null
2 $\quad$ InorderTreeWalk $(\operatorname{LeFt}(x))$


46

48


49


52

What about?
```Treewalk (x) if \(x \neq\) null \(\quad\) print \(x\) TreeWalk (Left \((x))\) Treewalk \((\operatorname{Right}(x))\)```

51

What about?
```TreeWalk (x) if \(x \neq\) null TreeWalk(Left \((x)\) ) TreeWalk(Right \((x)\) ) print \(x\)```

53


54


55



57


58


60


59


61


62

64



63


65


66

if we have a right subtree, return the smallest of the right subtree
$y \leftarrow \operatorname{PARENT}(x)$
while $y \neq$ null and $x=\operatorname{Right}(y)$
$x \leftarrow y$
$y \leftarrow \operatorname{PaRENT}(y)$
return $y$

68

69


70


72


71


73


74


76


75


77

## Deletion: case 3

Two children

Will we always have a successor?

Why successor?

- Larger than the left subtree
- Less than or equal to right subtree

78

## Balanced trees

Make sure that the trees remain balanced!
$\square$ Red-black trees
$\square \mathrm{AVL}$ trees

- 2-3-4 trees

ㅁ..

B-trees
Red-black trees: BST (plus some)


81

Red-black trees: BST (plus some)
every node is either red or black
root is black
leaves (NIL) are black
if a node is red, both children are black
for every node, all paths from the node to descendant leaves contain the same number of black nodes.
$h(x)$ : height of node $x$ : number of edges in longest path from $x$ to a leaf

82

Red-black trees: BST (plus some)

$h(x)$ : height of node $x$ : number of edges in longest path from $x$ to a leaf

Red-black trees: BST (plus some)
every node is either red or black
root is black
leaves (NIL) are black
if a node is red, both children are black
for every node, all paths from the node to descendant leaves contain the same number of black nodes.
$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )

Why don't we say "path with the most..."?

85


86

## Red-black trees: BST (plus some)


$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )

What is the black height of the root node?

87

Bounding the height
$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )

2

```
every node is either red or black
root is black
leaves (NIL) are black
if a node is red, both children are black
for every node, all paths from the node to
for every node, all paths from the node to
black nodes.
Claim 1: For every node \(x, b h(x) \geq h(x) / 2\)
\(h(x)\) : height of node \(x\) : number of edges in
ongest path from \(x\) to a leaf
\(h(x)\) : black height of node \(x\) : number of black nodes on a path from \(x\) to leaf (not including \(x\))
```

Proof?

89

	Bounding the height	
	every node is either red or black	$h(x)$ : height of node $x$ : number of edges in longest path from $x$ to a leaf
2.	root is black	
	leaves (NIL) are black	$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )
	for every node, all paths from the node to descendant leaves contain the same number of black nodes.	
Claim 1: For every node $x, b h(x) \geq h(x) / 2$		

Worst case: nodes alternate red/black

- root is black
- leaf is black

In terms of $h(x)$ : How many black nodes are there on this path?

90

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Proof?

## Bounding the height

every node is either red or black	$h(x)$ : height of node $x$ : number of edges in
2. root is black	longest path from $x$ to a lea
leaves ( NIL ) are black	
4. if a node is red, both children are black	$b h(x)$ : black height of node $x$ : number of
5. for every node, all paths from the node to descendant leaves contain the same number of black nodes.	black nodes on a path from $x$ to leaf (not including $x$ )

minimum black nodes on path: $\frac{h(x)}{2}+1$

$$
\mathrm{b} h(x) \geq \frac{h(x)}{2} \quad b h \text { does NOT include } \mathrm{x} \text {, i.e., the root in this case }
$$

91

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Base case:

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Base case: leaf $(h(x)=0)$

$$
\begin{aligned}
& b h(x)=0 \\
& 2^{0}-1=0
\end{aligned}
$$

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Inductive case: $h(x)>0$
$\mathrm{IH}: 2^{b h(y)}-1$ for all y that are subtrees of x
x is red: $\operatorname{bh}(\operatorname{child}(x))=\operatorname{bh}(x)-1$
x is black: $\operatorname{bh}(\operatorname{child}(x))=\operatorname{bh}(x)$ or $\operatorname{bh}(x)-1$
$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Inductive case: $h(x)>0$
$\mathrm{IH}: 2^{b h(y)}-1$ for all y that are subtrees of x

What is bh(child $(x))$ wrt $b h(x)$ ?
$b h(x)$ : black height of node $x$ : number of black nodes on a path from $x$ to leaf (not including $x$ )

95

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Inductive case: $h(x)>0$
$\mathrm{IH}: 2^{b h(y)}-1$ for all y that are subtrees of x
x is red: $b h(\operatorname{child}(x))=b h(x)-1$
x is black: $\operatorname{bh}(\operatorname{child}(x))=\operatorname{bh}(x)$ or $\operatorname{bh}(x)-1$

$$
b h(\operatorname{child}(x)) \geq b h(x)-1
$$

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

Inductive case: $h(x)>0$
IH: $2^{b h(y)}-1$ for all y that are subtrees of x
$b h(\operatorname{child}(x)) \geq b h(x)-1$


How many (internal nodes are in this tree (at least)?

98

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes
nductive case: $h(x)>0$
IH: $2^{b h(y)}-1$ for all y that are subtrees of x
$b h(\operatorname{child}(x)) \geq b h(x)-1$

$$
\left(2^{b h(x)-1}-1\right)+\left(2^{b h(x)-1}-1\right)+1=2^{b h(x)}-1
$$

## Bounding the height

Claim 2: The subtree rooted at any node $x$ contains at
least $2^{b h(x)}-1$ internal (non-leaf) nodes
Inductive case: $h(x)>0$
$\mathrm{IH}: 2^{b h(y)}-1$ for all y that are subtrees of x
$\operatorname{bh}(\operatorname{child}(x)) \geq b h(x)-1$


99

Bounding the height (almost there!)

Claim 1: For every node $x, b h(x) \leq \frac{h(x)}{2}$
Claim 2: The subtree rooted at any node $x$ contains at least $2^{b h(x)}-1$ internal (non-leaf) nodes

How does this help us?

Bounding the height	
Claim 1: For every node $x, b h(x) \geq \frac{h(x)}{2}$	
Claim 2: The subtree rooted at any node $x$ contains at	
least 2 $2^{b h(x)}-1$ internal (non-leaf) nodes	
$n \geq 2^{b h(x)}-1$	Claim 2
$n \geq 2^{h(x) / 2}-1$	Claim 1
$n+1 \geq 2^{h(x) / 2}$	math
$h(x) \leq 2 \log (n+1)$	math
What does this mean?	

102

## Bounding the height

every node is either red or black
root is black
leaves (NIL) are black If we can maintain these
if a node is red, both children are black properties: height $O(\log n)$
for every node, all paths from the no descendant leaves contain the same number of
black nodes.

Search   Insert   Delete   Maximum	

103


104

A quick example
hittps://www.youtube.com/watch? $\mathrm{V}=$ =vDHFF4wiWYU

105


[^0]:    Ambiguous about where elements that are equal would reside

