
9/6/22

1

Recurrences
David Kauchak

cs140
Fall 2022

1

Administrative
Mentor hours and office hours posted

Assignment 1

Assignment 2 out today (can start after this class)

2

Divide and Conquer
Divide: Break the problem into smaller sub-problems

Conquer: Solve the sub-problems. Generally, this involves
waiting for the problem to be small enough that it is trivial to
solve (i.e. 1 or 2 items)

Combine: Given the results of the solved sub-problems,
combine them to generate a solution for the complete
problem

3

Divide and Conquer:
some thoughts
Often, the sub-problem is the same as the original problem

Dividing the problem in half frequently does the job

May have to get creative about how the data is split

Splitting tends to generate run times with log n in them

4

9/6/22

2

Divide and conquer
One approach:
- Pretend like you have a working version of your

function, but it only works on smaller sub-
problems

- If you split up the current problem in some way
(e.g. in half) and solved those sub-problems,
how could you then get the solution to the larger
problem?

5

Divide and Conquer: Sorting
How should we split the data?

What are the sub-problems we need to solve?

How do we combine the results from these sub-
problems?

6

MergeSort

7

MergeSort: Merge
Assuming L and R are sorted already, merge
the two to create a single sorted array

8

9/6/22

3

Merge
R: 2 4 6 7L: 1 3 5 8

9

Merge
R: 2 4 6 7L: 1 3 5 8

B:

10

Merge
R: 2 4 6 7L: 1 3 5 8

B:

i j

11

Merge
R: 2 4 6 7L: 1 3 5 8

B:

i j

12

9/6/22

4

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1

i j

13

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1

i j

14

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2

i j

15

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2

i j

16

9/6/22

5

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3

i j

17

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3

i j

18

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4

i j

19

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4

i j

20

9/6/22

6

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5

i j

21

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5

i j

22

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6

i j

23

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6

i j

24

9/6/22

7

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7

i j

25

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7

i j

26

Merge
R: 2 4 6 7L: 1 3 5 8

B: 1 2 3 4 5 6 7 8

i j

27

Merge
Does the algorithm terminate?

28

9/6/22

8

Merge

Is it correct?
Loop invariant: At the end of each iteration of the for loop of
lines 4-10 the subarray B[1..k] contains the smallest k elements
from L and R in sorted order.

29

Merge

Is it correct?
Loop invariant: At the beginning of the for loop of lines 4-10 the
first k-1 elements of B are the smallest k-1 elements from L and
R in sorted order.

30

Merge

Running time?

31

Merge

Running time? Θ(n) - linear

32

9/6/22

9

MergeSort
Running time?

33

Merge-Sort
Running time?

î
í
ì

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data

C(n): cost of merging/combining the data

34

Merge-Sort
Running time?

î
í
ì

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data - linear Θ(n)

C(n): cost of merging/combining the data – linear Θ(n)

35

Merge-Sort
Running time?

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Which is?

36

9/6/22

10

Merge-Sort
cn

T(n/2)

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/2)

37

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

38

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)

39

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

40

9/6/22

11

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

cn

cn

cn

cn

cn

41

Merge-Sort
cn

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8…

c c c c c … c c c c c c

cn

cn

cn

cn

cn

Depth?
42

Merge-Sort
We can calculate the depth, by determining when the
recursion gets to down to a small problem size, e.g. 1

At each level, we divide by 2

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

43

Merge-Sort
Running time?

l Each level costs cn
l log n levels

cn log n = Θ(n log n)

î
í
ì

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

44

9/6/22

12

Recurrence
A function that is defined with respect to itself on
smaller inputs

nnTnT +=)2/(2)(

nnTnT +=)4/(16)(

2)1(2)(nnTnT +-=

45

Why are we interested in
recurrences?
Computational cost of divide and conquer algorithms

l a subproblems of size n/b
l D(n) the cost of dividing the data
l C(n) the cost of recombining the subproblem solutions

In general, the runtimes of most recursive algorithms
can be expressed as recurrences

)()()/()(nCnDbnaTnT ++=

46

The challenge
Recurrences are often easy to define because
they mimic the structure of the program

But… they do not directly express the
computational cost, i.e. n, n2, …

We want to remove self-recurrence and find a
more understandable form for the function

47

Three approaches
Substitution method: when you have a good
guess of the solution, prove that it’s correct

Recursion-tree method: If you don’t have a good
guess, the recursion tree can help. Then solve
with substitution method.

Master method: Provides solutions for
recurrences of the form:

)()/()(nfbnaTnT +=

48

9/6/22

13

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then constant amount of work

dnTnT +=)2/()(

Guesses?

49

Substitution method
Guess the form of the solution
Then prove it’s correct by induction

Halves the input then constant amount of work
Similar to binary search:

dnTnT +=)2/()(

Guess: O(log2 n)

50

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Ideas?

51

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction!
-Assume it’s true for smaller T(k), i.e. k < n
-prove that it’s then true for current T(n)

52

9/6/22

14

Assume T(k) = O(log2 k) for all k < n
Show that T(n) = O(log2 n)

From our assumption, T(n/2) = O(log2 n):

From the definition of big-O: T(n/2) ≤ c log2(n/2)

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

How do we now prove T(n) = O(log n)?

53

To prove that T(n) = O(log2 n) identify the appropriate
constants:

dnTnT +=)2/()(

dnTnT +=)2/()(
dnc +£)2/(log2

≤ c log2 n− c log2 2+ d

≤ c log2 n− c+ d

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c’ such that T(n) ≤ c’ log2 n

residual

from our inductive hypothesis

Key question: does a constant exist such that:
𝑇 𝑛 ≤ 𝑐′𝑙𝑜𝑔2𝑛

54

To prove that T(n) = O(log2 n) identify the appropriate
constants:

dnTnT +=)2/()(

þ
ý
ü

î
í
ì

³££
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c2 such that T(n) ≤ c2 log2 n

T n ≤ 𝑐𝑙𝑜𝑔2𝑛 − 𝑐 + 𝑑

Key question: does a constant exist such that:
𝑇 𝑛 ≤ 𝑐′𝑙𝑜𝑔2𝑛

if 𝑐 ≥ 𝑑, then, yes!
(if not, just let c’ = d)

55

Base case?
For an inductive proof we need to show two things:

l Assuming it’s true for k < n show it’s true for n
l Show that it holds for some base case

What is the base case in our situation?

î
í
ì

+
(1)Q

=
otherwise)2/(

small is if
)(

dnT
n

nT

56

9/6/22

15

Guess the solution?
At each iteration, does a linear amount of work (i.e.
iterate over the data) and reduces the size by one at
each step
O(n2)

Assume T(k) = O(k2) for all k < n
l again, this implies that T(n-1) ≤ c(n-1)2

Show that T(n) = O(n2), i.e. T(n) ≤ c’n2

nnTnT +-=)1()(

57

nnTnT +-=)1()(
nnc +-£ 2)1(

nnnc ++-=)12(2

nccncn ++-= 22

if

residual

02 £++- nccn

from our inductive hypothesis

then let c’ = c and there exists a constant
such that 𝑇 𝑛 ≤ 𝑐)𝑛2

58

nnTnT +-=)1()(
nnc +-£ 2)1(

nnnc ++-=)12(2

nccncn ++-= 22 residual

02 £++- nccn
nccn -£+- 2
nnc -£+-)12(

12 -
³
n
nc

n
c

/12
1
-

³which holds for any
c ≥1 for n ≥1

from our inductive hypothesis

59

