

1

## Admin

Final
$\square$ posted on Gradescope on Monday morning

- due Tuesday at 11:59pm
$\square$ time-limited (3 hours)
- You may use:
- the book
- your notes
- the class notes
- ONLY these things
$\square$ Do NOT discuss it with anyone until after Tuesday at 11:59pm


## Admin

All assignments graded and returned

Assignment 11 due Wednesday!

Dr. Dave: normal mentor hours through $12 / 12$

Last mentor session: Millie, Wednesday 10am-12
(l'm still trying to add some over the weekend)

2

## Test taking advice

$\square$ Read the questions carefully!
$\square$ Don't spend too much time on any problem - if you get stuck, move on and come back
$\square$ When you finish answering a question, reread the question and make sure that you answered everything the question asked
$\square$ Think about how you might be able to reuse an existing algorithm/approach
$\square$ Show your work (I can't give you partial credit if I can't figure out what went wrong)
$\square$ Don't rely on the book/notes for conceptual things - Do rely on the notes for a run-time you may not remember, etc.

## High-level approaches

Algorithm tools
$\square$ Divide and conquer

- assume that we have a solver, but that can only solve subproblems
- define the current problem with respect to smaller problems
- Key: sub-problems should be non-overlapping
$\square$ Dynamic programming
- Same as above
- Key difference: sub-problems are overlapping
- Once you have this recursive relationship:
- figure out the data structure to store sub-problem solutions
- work from bottom up (or memoize)

5

| Data structures  <br> A data structure  <br> $\square$ Stores data <br> $\square$ Supports access to/questions about data efficiently  <br> $\quad$ the different bias towards different actions  <br> $\square$ No single best data structure  <br> Fast access/lookup?  <br> $\square$ If keys are sequential: array  <br> $\square$ If keys are non-sequential or non-numerical: hashtable  <br> $\square$ Guaranteed run-time/ordered: balanced binary search  <br> tree  |
| :--- |

7

## High-level approaches

Algorithm tools cont.
$\square$ Greedy

- Same idea: most greedy problems can be solve using dynamic programming (but generally slower)
- Key difference: Can decide between overlapping subproblems without having to calculate them (i.e. we can make a local decision)
$\square$ Flow
- Matching problems

■ Numerical maximization/minimization problems

6


8

| Graphs |
| :--- |
| Graph types |
| $\square$ directed/undirected |
| $\square$ weighted/unweighted |
| $\square$ trees, DAGs |
| $\square$ cyclic |
| $\square$ connected |
| Algorithms |
| $\square$ connectedness |
| $\square$ contains a cycle |
| $\square$ traversal |
| $\square$ dfs |
| $\square$ bfs |

9

| Other topics... |
| :--- |
| Analysis tools <br> $\square$ recurrences <br> $\square$ big-O |
| NP-completeness <br> $\square$ proving NP-completeness <br> $\square$ reductions |

11

## Graphs

Graph algorithms cont.
$\square$ minimum spanning trees
$\square$ shortest paths

- single source
- all pairs
$\square$ topological sort
- flow

10

## NP Terminology

P: set of problems that can be solved in polynomial time

NP: set of problems that can be verified in polynomial time (i.e., given a problem instance and a solution, verify that it is a solution)

NP-Hard: A problem is NP-Hard if any other NP-Hard problem can be reduced to the problem in polynomial time

NP-Complete: A problem is NP-Complete if it is both in NP and NP-Hard.

12

| Reduction direction |
| :--- |
|  |
|  |
|  |
|  |

13

## Independent-Set revisited

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $\left|V{ }^{\prime}\right|=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Reduce 3-SAT to Independent-Set
20

## Independent-Set revisited

Given a graph $G=(V, E)$ is there a subset $V^{\prime} \subseteq V$ of vertices of size $|V '|=k$ that are independent, i.e. for any pair of vertices $u, v \in V^{\prime}$ there exists no edge between any of these vertices


Is Independent-Set NP-Complete?
19

## 

Given a 3-CNF formula, convert it into a graph

$$
(a \vee \neg a \vee \neg b) \wedge(c \vee b \vee d) \wedge(\neg a \vee \neg c \vee \neg d)
$$

For the boolean formula in 3-SAT to be satisfied, at least one of the literals in each clause must be true

In addition, we must make sure that we enforce a literal and its complement must not both be true.

21

## 

## Given a 3-CNF formula, convert into a graph

For each clause, e.g. ( $a \bigcirc R \sim b O R$ c) create a clique containing vertices representing these literals


- for the Independent-Set problem to be satisfied it can only select one variable
- to make sure that all clauses are satisfied, we set $k=$ number of clauses


## Proof

"yes" for 3-SAT -> "yes" for INDEPENDENT-SET

Given a 3-SAT problem with k clauses and a valid truth assignment, show that $f(3-S A T)$ has an independent set of size $k$. (Assume you know the solution to the 3-SAT problem and show how to get the solution to the independent set problem)

Since each clause is an OR of variables, at least one of the three must be true for the entire formula to be true. Therefore each 3clique in the graph will have at least on node that can be selected.

## Proof

"yes" for INDEPENDENT-SET -> "yes" 3-SAT

Given a graph with an independent set $S$ of $k$ vertices, show there exists a truth assignment satisfying the boolean formula
$\square$ For any variable $\mathrm{x}_{\mathrm{i}}, \mathrm{S}$ cannot contain both $\mathrm{x}_{\mathrm{i}}$ and $\neg \mathrm{x}_{\mathrm{i}}$ since they are connected by an edge
$\square$ For each vertex in $S$, we assign it a true value and all others false. Since $S$ has only $k$ vertices, it must have one vertex per clause

## 3-SAT $\leq$ Independent-Set

Given a 3-CNF formula, convert into a graph

To enforce that only one variable and its complement can be set we connect each vertex representing $x$ to each vertex representing its complement $\sim x$


23

25

| Master Method |
| :--- |
| Provides solutions to the recurrences of the form: |
| $T(n)=a T(n / b)+f(n)$ |
| if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$ |
| if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ |
| if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ |
| then $T(n)=\Theta(f(n))$ |

26


28


27

Proving bounds: find constants that satisfy inequalities

Show that $5 n^{2}-15 n+100$ is $O\left(n^{2}\right)$

Find constants c and $n_{0}$ such that $5 n^{2}-15 n+100 \leq c n^{2}$ for all $n>n_{0}$

$$
c n^{2} \geq 5 n^{2}-15 n+100
$$

$c \geq 5-15 / n+100 / n^{2}$

Let $\mathrm{no}=1$ and $\mathrm{c}=5+100=105$.
$100 / n^{2}$ only get smaller as $n$ increases and we ignore $-15 / n$ since it only varies between -15 and 0


30


31

Subset-Sum: dynamic programming

Recursive case:
$S S\left(S_{1 \ldots, t} t\right)=$


33


34


36

Subset-Sum: dynamic programming DP setup:
$S S[n, t]=S S[n-1, t]| | S S\left[n-1, t-S_{n}\right]$

35


37

| Subset-Sum NP-Complete?! |
| :--- |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

38

