
12/6/22

1

REVIEW
David Kauchak
CS 140 – Fall 2022

1

Admin

All assignments graded and returned

Assignment 11 due Wednesday!

Dr. Dave: normal mentor hours through 12/12

Last mentor session: Millie, Wednesday 10am-12
(I’m still trying to add some over the weekend)

2

Admin

Final
¤ posted on Gradescope on Monday morning
¤ due Tuesday at 11:59pm
¤ time-limited (3 hours)
¤ You may use: 

n the book 
n your notes 
n the class notes 
n ONLY these things

¤ Do NOT discuss it with anyone until after Tuesday at 
11:59pm

3

Test taking advice

¨ Read the questions carefully!
¨ Don’t spend too much time on any problem

¤ if you get stuck, move on and come back

¨ When you finish answering a question, reread the question 
and make sure that you answered everything the question 
asked

¨ Think about how you might be able to reuse an existing 
algorithm/approach

¨ Show your work (I can’t give you partial credit if I can’t 
figure out what went wrong)

¨ Don’t rely on the book/notes for conceptual things
¤ Do rely on the notes for a run-time you may not remember, etc.

4



12/6/22

2

High-level approaches

Algorithm tools
¤ Divide and conquer

n assume that we have a solver, but that can only solve sub-
problems

n define the current problem with respect to smaller problems
n Key: sub-problems should be non-overlapping

¤ Dynamic programming
n Same as above
n Key difference: sub-problems are overlapping
n Once you have this recursive relationship:

n figure out the data structure to store sub-problem solutions
n work from bottom up (or memoize)

5

High-level approaches

Algorithm tools cont.
¤ Greedy

n Same idea: most greedy problems can be solve using 
dynamic programming (but generally slower)

n Key difference: Can decide between overlapping sub-
problems without having to calculate them (i.e. we can 
make a local decision)

¤ Flow
n Matching problems
n Numerical maximization/minimization problems 

6

Data structures

A data structure
¤ Stores data
¤ Supports access to/questions about data efficiently

n the different bias towards different actions
¤ No single best data structure

Fast access/lookup?
¤ If keys are sequential: array
¤ If keys are non-sequential or non-numerical: hashtable
¤ Guaranteed run-time/ordered: balanced binary search 

tree

7

Data structures

Min/max?
¤ heap

Fast insert/delete at positions?
¤ linked list

Others
¤ stacks/queues
¤ extensible data structures
¤ disjoint sets

8



12/6/22

3

Graphs

Graph types
¤ directed/undirected
¤ weighted/unweighted
¤ trees, DAGs
¤ cyclic
¤ connected

Algorithms
¤ connectedness
¤ contains a cycle
¤ traversal

n dfs
n bfs

9

Graphs

Graph algorithms cont.
¤ minimum spanning trees
¤ shortest paths

n single source
n all pairs

¤ topological sort
¤ flow

10

Other topics…

Analysis tools
¤ recurrences
¤ big-O

NP-completeness
¤ proving NP-completeness
¤ reductions

11

NP Terminology

P: set of problems that can be solved in polynomial time

NP: set of problems that can be verified in polynomial time 
(i.e., given a problem instance and a solution, verify that it is 
a solution)

NP-Hard: A problem is NP-Hard if any other NP-Hard 
problem can be reduced to the problem in polynomial time

NP-Complete: A problem is NP-Complete if it is both in NP 
and NP-Hard.

12



12/6/22

4

Reduction direction

13

Independent-Set revisited

Given a graph G = (V, E) is there a subset V’⊆ V of vertices of 
size |V ‘| = k that are independent, i.e. for any pair of vertices 
u, v ∈ V’ there exists no edge between any of these vertices

Is Independent-Set NP-Complete?

19

Independent-Set revisited

Given a graph G = (V, E) is there a subset V’⊆ V of vertices of 
size |V ‘| = k that are independent, i.e. for any pair of vertices 
u, v ∈ V’ there exists no edge between any of these vertices

Reduce 3-SAT to Independent-Set

20

3-SAT ≤ Independent-Set

Given a 3-CNF formula, convert it into a graph

For the boolean formula in 3-SAT to be satisfied, at 
least one of the literals in each clause must be true

In addition, we must make sure that we enforce a 
literal and its complement must not both be true.

(a∨¬a∨¬b)∧(c∨b∨d)∧(¬a∨¬c∨¬d)

p

21



12/6/22

5

Given a 3-CNF formula, convert into a graph

For each clause, e.g. (a OR ~b OR c) create a clique 
containing vertices representing these literals

a

~b

c

- for the Independent-Set problem to be 
satisfied it can only select one variable

- to make sure that all clauses are 
satisfied, we set k = number of clauses

3-SAT ≤ Independent-Set
p

22

Given a 3-CNF formula, convert into a graph

To enforce that only one variable and its complement 
can be set we connect each vertex representing x to 
each vertex representing its complement ~x

a

~b

c

b

d

e

3-SAT ≤ Independent-Set
p

23

Proof

”yes” for 3-SAT -> “yes” for INDEPENDENT-SET

Given a 3-SAT problem with k clauses and a valid truth 
assignment, show that f(3-SAT) has an independent set of size k. 
(Assume you know the solution to the 3-SAT problem and show 
how to get the solution to the independent set problem)

Since each clause is an OR of variables, at least one of the three 
must be true for the entire formula to be true.  Therefore each 3-
clique in the graph will have at least on node that can be 
selected.

24

Proof

“yes” for INDEPENDENT-SET -> “yes” 3-SAT

Given a graph with an independent set S of k vertices,  
show there exists a truth assignment satisfying the boolean
formula

¤ For any variable xi, S cannot contain both xi and ¬xi since 
they are connected by an edge

¤ For each vertex in S, we assign it a true value and all others 
false. Since S has only k vertices, it must have one vertex 
per clause

25



12/6/22

6

Master Method

Provides solutions to the recurrences of the form:

)()/()( nfbnaTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Q=> = - ee

)log()( then ),()( if loglog nnnTnnf aa bb Q=Q=

1for  )()/( and 0for )()( if log <£> W= + cncfbnafnnf ab ee

))(()(then nfnT Q=

26

Recurrences

dnTnT += )3/(2)(

nnTnT log)1()( +-=

nnTnT += )7/(7)(

3)2/(8)( nnTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Q=> = - ee

)log()( then ),()( if loglog nnnTnnf aa bb Q=Q=

))(()(then nfnT Q=
1for  )()/( and 0for )()( if log <£> W= + cncfbnafnnf ab ee

27

Big O: Upper bound

O(g(n)) is the set of functions:

28

Proving bounds: find constants that satisfy 
inequalities

Show that 5n2 – 15n + 100 is O(n2)

Find constants c and n0 such that 
5n2 – 15n + 100 ≤ cn2 for all n > n0

Let n0 =1 and c = 5 + 100 = 105.
100/n2 only get smaller as n increases and we ignore -15/n since it only 
varies between -15 and 0

29



12/6/22

7

Induction on trees

A tree has |V|-1 edges

30

Subset-Sum: dynamic programming

S = S1…Sn

SS(S,t): true/false, does S contain a subset that sums to 
t

31

Subset-Sum: dynamic programming

Recursive case:

SS(S1…n, t) = 

32

Subset-Sum: dynamic programming

Recursive case:

SS(S1…n, t) = SS(S1…n-1, t) || SS(S1…n-1, t-Sn)

What’s changing?  What does the structure look like?

33



12/6/22

8

Subset-Sum: dynamic programming

Recursive case:

SS(S1…n, t) = SS(S1…n-1, t) || SS(S1…n-1, t-Sn)

34

Subset-Sum: dynamic programming

DP setup:

SS[n, t] = SS[n-1, t] || SS[n-1, t-Sn]

35

Subset-Sum: dynamic programming

DP setup:

SS[n, t] = SS[n-1, t] || SS[n-1, t-Sn]

n 
…

 1

0 … t

36

Subset-Sum: dynamic programming

DP setup:

SS[n, t] = SS[n-1, t] || SS[n-1, t-Sn]

n 
…

 1

0 … t

runtime?

37



12/6/22

9

Subset-Sum NP-Complete?!

38


