
11/15/22

1

NP-COMPLETE PROBLEMS

1

Run-time analysis

We’ve spent a lot of time in this class putting algorithms
into specific run-time categories:

¤ O(log n)
¤ O(n)
¤ O(n log n)
¤ O(n2)
¤ O(n log log n)
¤ O(n1.67)
¤ …

When I say an algorithm is O(f(n)), what does that mean?

2

Tractable vs. intractable problems

What is a “tractable” problem?

3

Tractable vs. intractable problems

Tractable problems can be solved in
O(f(n)) where f(n) is a polynomial

4

11/15/22

2

Tractable vs. intractable problems

What about…

O(nlog log log log n)?

O(n100)?

5

Tractable vs. intractable problems

Technically O(n100) is tractable by our definition

Why don’t we worry about problems like this?

6

Tractable vs. intractable problems

Technically O(n100) is tractable by our definition
• Few practical problems result in solutions like this
• Once a polynomial time algorithm exists, more

efficient algorithms are usually found
• Polynomial algorithms are amenable to parallel

computation

7

Solvable vs. unsolvable problems

What is a “solvable” problem?

8

11/15/22

3

Solvable vs. unsolvable problems

A problem is solvable if given enough (i.e.
finite) time you could solve it

9

Sorting

Given n integers, sort them from smallest to largest.

Tractable/intractable?

Solvable/unsolvable?

10

Sorting

Given n integers, sort them from smallest to largest.

Solvable and tractable:
Mergesort: Θ(n log n)

11

Enumerating all subsets

Given a set of n items, enumerate all possible
subsets.

Tractable/intractable?

Solvable/unsolvable?

12

11/15/22

4

Enumerating all subsets

Given a set of n items, enumerate all possible
subsets.

Solvable, but intractable: Θ(2n) subsets

For large n this will take a very, very long time

13

Halting problem

Given an arbitrary algorithm/program and a
particular input, will the program terminate?

Tractable/intractable?

Solvable/unsolvable?

14

Halting problem

Given an arbitrary algorithm/program and a
particular input, will the program terminate?

Unsolvable L

15

Integer solution?

Given a polynomial equation, are there integer values
of the variables such that the equation is true?

Tractable/intractable?

Solvable/unsolvable?

x3yz+ 2y4z2 − 7xy5z = 6

16

11/15/22

5

Integer solution?

Given a polynomial equation, are there integer values
of the variables such that the equation is true?

x3yz+ 2y4z2 − 7xy5z = 6

Unsolvable L

17

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

A

B

E
D

F

18

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

A

B

E
D

F

19

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

A

B

E
D

F

20

11/15/22

6

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

A

B

E
D

F

21

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

Tractable/intractable?

Solvable/unsolvable?

22

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

Solvable: Enumerate all possible paths (i.e.
include an edge or don’t) check if it’s a
hamiltonian cycle

How would we do this check exactly,
specifically given a graph and a path?

23

Checking hamiltonian cycles

24

11/15/22

7

Checking hamiltonian cycles

Make sure the path starts and
ends at the same vertex and is
the right length

Can’t revisit a vertex

Edge has to be in the graph

Check if we visited all the vertices

25

NP problems

NP is the set of problems that can be verified in
polynomial time

A problem can be verified in polynomial time if you can
check that a given solution is correct in polynomial time

(NP is an abbreviation for non-deterministic polynomial time)

26

Checking hamiltonian cycles

Running time?

O(V) adjacency matrix
O(V+E) adjacency list

What does that say about the
hamilonian cycle problem?

It belongs to NP

27

NP problems

Why might we care about NP problems?
¤ If we can’t verify the solution in polynomial time then an

algorithm cannot exist that determines the solution in
this time (why not?)

¤ All algorithms with polynomial time solutions are in NP

The NP problems that are currently not solvable in
polynomial time could in theory be solved in polynomial
time

28

11/15/22

8

P and NP

P

NP
Big-O allowed us to group
algorithms by run-time

Today, we’re talking about sets
of problems grouped by how
easy they are to solve

29

Reduction function

Given two problems P1 and P2 a reduction function,
f(x), is a function that transforms a problem instance x
of type P1 to a problem instance of type P2

such that: a solution to x exists for P1 iff a solution for
f(x) exists for P2

fx f(x)
P1 instance P2 instance

30

Reduction function

Where have we seen reductions before?
¤ Bipartite matching reduced to flow problem
¤ All pairs shortest path through a particular vertex

reduced to single source shortest path
Why are they useful?

fx f(x)
P1 instance P2 instance

31

Reduction function

f Problem P2
x f(x) yes

no

yes

no

Problem P1

Allow us to solve P1 problems if we have a solver for P2

fx f(x)
P1 instance P2 instance

answer

32

11/15/22

9

Reduction function

f Problem P2
x f(x)

P2 solution

Problem P1

f ’

P1 solution

Most of the time we’ll worry about yes no question,
however, if we have more complicated answers we
often just have to do a little work to the solution to
the problem of P2 to get the answer

33

Reduction function: Example

P1 = Bipartite matching
P2 = Network flow

f Problem P2
x f(x)

P2 solution

Problem P1

f ’

P1 solution

Reduction function (f): Given any bipartite matching
problem turn it into a network flow problem

What is f and what is f ’?

34

Reduction function: Example

P1 = Bipartite matching
P2 = Network flow

f Problem P2
x f(x)

P2 solution

Problem P1

f ’

P1 solution

Reduction function (f): Given any bipartite matching
problem turn it into a network flow problem

A reduction function reduces problems instances

35

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)
2. any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

The hamiltonian cycle problem is NP-complete

What are the implications of this?
What does this say about how hard the hamiltonian cycle
problem is compared to other NP-complete problems?

36

11/15/22

10

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)
2. any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

The hamiltonian cycle problem is NP-complete

It’s at least as hard as any of the other NP-complete
problems

37

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)
2. any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

If I found a polynomial-time solution to the
hamiltonian cycle problem, what would this mean
for the other NP-complete problems?

38

NP-complete

If a polynomial-time solution to the hamiltonian cycle problem is
found, we would have a polynomial time solution to any NP-
complete problem

¤ Take the input of the problem
¤ Convert it to the hamiltonian cycle problem (by definition, we know we

can do this in polynomial time)
¤ Solve it
¤ If yes output yes, if no, output no

f Ham-Problem: P2
x f(x) yes

no

yes

no

NP problem

NP problem answer

39

NP-complete

Similarly, if we found a polynomial time solution to any
NP-complete problem we’d have a solution to all NP-
complete problems

f Solved NP-Problem: P2
x f(x) yes

no

yes

no

NP problem

NP problem answer

40

11/15/22

11

NP-complete problems

Longest path
Given a graph G with nonnegative edge weights does a
simple path exist from s to t with weight at least g?

41

NP-complete problems

3D matching
Bipartite matching: given two sets of things and pair
constraints, find a matching between the sets
3D matching: given three sets of things and triplet constraints,
find a matching between the sets

Figure from Dasgupta et. al 2008

43

P vs. NP

Polynomial time solutions exist
NP-complete
(and no polynomial time
solution currently exists)

Shortest path

Bipartite matching

Linear programming

Minimum cut

…

Longest path

3D matching

Integer linear programming

Balanced cut

…

44

Proving NP-completeness

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)
2. any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

Ideas?

45

11/15/22

12

Proving NP-completeness

Given a problem NEW to show it is NP-Complete

1. Show that NEW is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time

2. Show that all NP-complete problems are reducible to
NEW in polynomial time

a. Describe a reduction function f from a known NP-Complete
problem to NEW

b. Show that f runs in polynomial time
c. Show that a solution exists to the NP-Complete problem IFF

a solution exists to the NEW problem generate by f

46

Proving NP-completeness

Show that a solution exists to the NP-Complete problem IFF a
solution exists to the NEW problem generate by f

¤ Assume we have an NP-Complete problem instance that has
a solution, show that the NEW problem instance generated
by f has a solution

¤ Assume we have a problem instance of NEW generated by f
that has a solution, show that we can derive a solution to the
NP-Complete problem instance

Other ways of proving the IFF, but this is often the easiest

47

Proving NP-completeness

Why is it sufficient to show that one NP-complete
problem reduces to the NEW problem?

Show that all NP-complete problems are
reducible to NEW in polynomial time

48

Proving NP-completeness

All others can be reduced to NEW by first reducing to
the one problem, then reducing to NEW. Two
polynomial time reductions is still polynomial time!

Show that all NP-complete problems are
reducible to NEW in polynomial time

49

11/15/22

13

Proving NP-completeness

Show that all NP-complete problems are reducible to
NEW in polynomial time

Show that any NP-complete problem is reducible to
NEW in polynomial time

Show that NEW is reducible to any NP-complete
problem in polynomial time

BE CAREFUL!

50

NP-complete: 3-SAT

A boolean formula is in n-conjunctive normal form (n-CNF) if:
¤ it is expressed as an AND of clauses
¤ where each clause is an OR of no more than n variables

3-SAT: Given a 3-CNF boolean formula, is it satisfiable?

(a∨¬a∨¬b)∧(c∨b∨d)∧(¬a∨¬c∨¬d)

3-SAT is an NP-complete problem

51

NP-complete: SAT

Given a boolean formula of n boolean variables joined by
m connectives (AND, OR or NOT) is there a setting of the
variables such that the boolean formula evaluate to true?

((¬(b∨¬c)∧a)∨(a ^ b ^ c)) ^ c ^¬b

(a∧b)∨(¬a∧¬b)

Is SAT an NP-complete problem?

52

NP-complete: SAT

1. Show that SAT is in NP
a. Provide a verifier

b. Show that the verifier runs in polynomial time

2. Show that all NP-complete problems are reducible to SAT in polynomial
time

a. Describe a reduction function f from a known NP-Complete problem to SAT

b. Show that f runs in polynomial time
c. Show that a solution exists to the NP-Complete problem IFF a solution exists to

the SAT problem generate by f

Given a boolean formula of n boolean variables joined by m
connectives (AND, OR or NOT) is there a setting of the variables
such that the boolean formula evaluate to true?

((¬(b∨¬c)∧a)∨(a ^ b ^ c)) ^ c ^¬b

53

11/15/22

14

NP-Complete: SAT

1. Show that SAT is in NP
a. Provide a verifier

b. Show that the verifier runs in polynomial time

Verifier: A solution consists of an assignment of the variables
• If clause is a single variable:
• return the value of the variable

• otherwise
• for each clause:
• call the verifier recursively
• compute a running solution

polynomial run-time?

54

NP-Complete: SAT

Verifier: A solution consists of an assignment of the variables
• If clause is a single variable:
• return the value of the variable

• otherwise
• for each clause:
• call the verifier recursively
• compute a running solution

linear time

- at most a linear number of recursive calls (each call
makes the problem smaller and no overlap)

- overall polynomial time

55

NP-Complete: SAT
1.

2. Show that all NP-complete problems are reducible to SAT in polynomial time
a. Describe a reduction function f from a known NP-Complete problem to SAT

b. Show that f runs in polynomial time

c. Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT
problem generate by f

Reduce 3-SAT to SAT:
- Given an instance of 3-SAT, turn it into an instance of SAT

Reduction function:
• DONE J

- Runs in constant time! (or linear if you have to copy the problem)

56

NP-Complete: SAT

- Assume we have a 3-SAT problem with a solution:
- Because 3-SAT problems are a subset of SAT problems, then the SAT problem

will also have a solution
- Assume we have a problem instance generated by our reduction with a solution:

- Our reduction function simply does a copy, so it is already a
3-SAT problem

- Therefore the variable assignment found by our SAT-solver will also be a
solution to the original 3-SAT problem

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW
problem generate by f

¤ Assume we have an NP-Complete problem instance that has a solution, show that
the NEW problem instance generated by f has a solution

¤ Assume we have a problem instance of NEW generated by f that has a solution,
show that we can derive a solution to the NP-Complete problem instance

57

11/15/22

15

NP-Complete problems

Why do we care about showing that a problem is NP-
Complete?

¤ We know that the problem is hard (and we probably won’t
find a polynomial time exact solver)

¤ We may need to compromise:
n reformulate the problem
n settle for an approximate solution

¤ Down the road, if a solution is found for an NP-complete
problem, then we’d have one too…

58

CLIQUE

A clique in an undirected graph G = (V, E) is a subset V’
⊆ V of vertices that are fully connected, i.e. every
vertex in V’ is connected to every other vertex in V’

CLIQUE problem: Does G contain a clique of size k?

Is there a clique of size 4 in this graph?

59

CLIQUE

A clique in an undirected graph G = (V, E) is a subset V’
⊆ V of vertices that are fully connected, i.e. every
vertex in V’ is connected to every other vertex in V’

CLIQUE problem: Does G contain a clique of size k?

CLIQUE is an NP-Complete problem

60

HALF-CLIQUE

Given a graph G, does the graph contain a clique
containing exactly half the vertices?

Is HALF-CLIQUE an NP-complete problem?

61

11/15/22

16

Is Half-Clique NP-Complete?

1. Show that NEW is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time

2. Show that all NP-complete problems are reducible to NEW in
polynomial time

a. Describe a reduction function f from a known NP-Complete problem to
NEW

b. Show that f runs in polynomial time
c. Show that a solution exists to the NP-Complete problem IFF a solution

exists to the NEW problem generate by f

Given a graph G, does the graph contain a clique
containing exactly half the vertices?

62

