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Inductive proofs

Weak vs. strong?



Inductive proofs

Weak: inductive hypothesis only assumes it 
holds for some step (e.g., kth step)

Strong: inductive hypothesis assumes it holds 
for all steps from the base case up to k



Sorting

What sorting algorithm?



Sorting



Does it terminate?

Is it correct?

How long does it take to run?

Memory usage?



Insertion-sort

Does it terminate?



Insertion-sort

Is it correct?  Can you prove it?



Loop invariant

Loop invariant: A statement about a loop that is true 
before the loop begins and after each iteration of the loop.

Upon termination of the loop, the invariant should help you 
show something useful about the algorithm.

Loop invariant?



Loop invariant

Loop invariant: A statement about a loop that is true 
before the loop begins and after each iteration of the loop.

At the start of each iteration of the for loop of lines 1-7 the subarray A[1..j − 1]
is the sorted version of the original elements of A[1..j − 1]

Proof?



Loop invariant
At the start of each iteration of the for loop of lines 1-7 the 
subarray A[1..j − 1] is the sorted version of the original elements 
of A[1..j − 1]

Proof by induction
- Base case: invariant is true before loop
- Inductive case: it is true after each iteration



Insertion-sort

How long will it take to run?



Asymptotic notation
How do you answer the question: “what is the running 
time of algorithm x?”

Talk about the computational cost of an algorithm that 
focuses on the essential parts and ignores irrelevant 
details

You’ve seen some of this already:
● linear
● n log n
● n2



Asymptotic notation
Precisely calculating the actual steps is tedious and 
not generally useful

Different operations take different amounts of time.  
Even from run to run, things such as caching, etc. 
cause variations

We want to identify categories of algorithmic 
runtimes



For example…
f1(n) takes n2 steps
f2(n) takes 2n + 100 steps
f3(n) takes 3n+1 steps

Which algorithm is better?
Is the difference between f2 and f3
important/significant?  



Runtime examples



Big O: Upper bound
O(g(n)) is the set of functions:



Big O: Upper bound
O(g(n)) is the set of functions:

We can bound the function f(n)
above by some constant factor 
of g(n)



Big O: Upper bound
O(g(n)) is the set of functions:

We can bound the function f(n)
above by some constant 
multiplied by g(n)

For some increasing 
range



Big O: Upper bound
O(g(n)) is the set of functions:



Big O: Upper bound
O(g(n)) is the set of functions:

Generally, we’re most interested in 
big O notation since it is an upper 
bound on the running time



Omega: Lower bound
Ω(g(n)) is the set of functions:



Omega: Lower bound
Ω(g(n)) is the set of functions:

We can bound the function f(n)
below by some constant factor 
of g(n)



Omega: Lower bound
Ω(g(n)) is the set of functions:



Theta: Upper and lower bound
Θ(g(n)) is the set of functions:



Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

We can bound the function f(n)
above and below by some 
constant factor of g(n) (though 
different constants)



Theta: Upper and lower bound
Θ(g(n)) is the set of functions:

Note:  A function is theta bounded iff it is big O 
bounded and Omega bounded



Theta: Upper and lower bound
Θ(g(n)) is the set of functions:



Visually

f(n)



Visually: upper bound

n0

f(n)



Visually: lower bound

n0

f(n)



worst-case vs. best-case vs. 
average-case
worst-case: what is the worst the running time of the 
algorithm can be?

best-case: what is the best the running time of the algorithm 
can be?

average-case: given random data, what is the running time of 
the algorithm?

Don’t confuse this with O, Ω and Θ.  The cases above are 
situations, asymptotic notation is about bounding particular 
situations



Proving bounds: find constants that 
satisfy inequalities

Show that 5n2 – 15n + 100 is Θ(n2)

Step 1: Prove O(n2) – Find constants c and n0 such that 
5n2 – 15n + 100 ≤ cn2 for all n > n0

Let n0 =1 and c = 5 + 100 = 105.
100/n2 only get smaller as n increases and we ignore -15/n since it 
only varies between -15 and 0



Proving bounds
Step 2: Prove Ω(n2) – Find constants c and n0 such 
that 5n2 – 15n + 100 ≥ cn2 for all n > n0

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less than 1.25). 15/n is 
always decreasing and we ignore 100/n2 since it is always between 
0 and 100.



Bounds
No

How would we prove it?



Disproving bounds

Assume it’s true.

That means there exists some c and n0 such that

contradiction!



Some rules of thumb
Multiplicative constants can be omitted

● 14n2 becomes n2
● 7 log n become log n

Lower order functions can be omitted
● n + 5 becomes n
● n2 + n becomes n2

na dominates nb if a > b
● n2 dominates n, so n2+n becomes n2
● n1.5 dominates n1.4



Some rules of thumb
an dominates bn if a > b

● 3n dominates 2n

Any exponential dominates any polynomial
● 3n dominates n5
● 2n dominates nc

Any polynomial dominates any logorithm
● n dominates log n or log log n
● n2 dominates n log n
● n1/2 dominates log n

Do not omit lower order terms of different variables (n2 + m) does not 
become n2



Big O

n2 + n log n + 50

2n -15n2 + n3 log n

nlog n + n2 + 15n3

n5 + n! + nn



Some examples
● O(1) – constant.  Fixed amount of work, 

regardless of the input size
● add two 32 bit numbers
● determine if a number is even or odd
● sum the first 20 elements of an array
● delete an element from a doubly linked list

● O(log n) – logarithmic.  At each iteration, 
discards some portion of the input (i.e. half)
● binary search



Some examples
● O(n) – linear. Do a constant amount of work 

on each element of the input
● find an item in a linked list
● determine the largest element in an array

● O(n log n) log-linear.  Divide and conquer 
algorithms with a linear amount of work to 
recombine
● Sort a list of number with MergeSort
● FFT



Some examples
● O(n2) – quadratic. Double nested loops that 

iterate over the data
● Insertion sort

● O(2n) – exponential
● Enumerate all possible subsets
● Traveling salesman using dynamic programming

● O(n!)
● Enumerate all permutations
● determinant of a matrix with expansion by minors


