Admin

Assignment 7 graded

Assignment 9

1

Checkpoint 3

Greedy algorithms -> all pairs shortest paths

Could ask to decide greedy vs. DP, but no DP solutions/algorithms
(will not include network flow)

2 pages of notes

3

Student networking

You decide to create your own computer network:

- You get three of your friends and string some network cables
- Because of capacity (due to cable type, distance, computer, etc) you can only send a certain amount of data to each person
- If edges denote capacity, what is the maximum throughput you can you send from S to T ?

4

5

Another flow problem

7

Another flow problem

6

Flow graph/networks

Flow network
\square directed, weighted graph (V, E)
\square positive edge weights indicating the "capacity" (generally, assume integers)
\square contains a single source $s \in V$ with no incoming edges
\square contains a single sink/target $t \in \mathrm{~V}$ with no outgoing edges
\square every vertex is on a path from s to t

8

9

Max flow problem

Given a flow network: what is the maximum flow we can send from s to t that meet the flow constraints?

11

Flow
in-flow $=$ out-flow for every vertex (except s, t)
flow along an edge cannot exceed the edge capacity
flows are positive

10

12
Max flow origins
Rail networks of the Soviet Union in the 1950's
The US wanted to know how quickly the Soviet Union could get
supplies through its rail network to its satellite states in Eastern
Europe.
In addition, the US wanted to know which rails it could destroy most
easily to cut off the satellite states from the rest of the Soviet Union.
These two problems are closely related: solving the max flow
problem also solves the min cut problem of figuring out the
cheapest way to cut off the Soviet Union from its satellites.
Source: Ibackstrom, The Importance of Algorithms, at www.topcoder.com

13

Algorithm idea

16

15

18

20

19

21

22

24

23

25

26

Flow across cuts

The flow "across" a cut is the total flow from nodes in S_{s} to nodes in S_{t} minus the total from nodes in S_{t} to S_{s}

What is the flow across this cut?

28

Flow across cuts

In flow graphs, we're interested in cuts that separate sfrom t, that is $s \in S_{s}$ and $t \in S_{t}$

27

Flow across cuts

The flow "across" a cut is the total flow from nodes in S_{s} to nodes in S_{t} minus the total from nodes in S_{t} to S_{s}

$$
10+10-6=14
$$

29

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

What do we know about the flow across the any such cut?

30

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
4+10=14
$$

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

31

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
4+6+4=14
$$

33

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

$$
10+10-6=14
$$

34

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Inductively?
\square every vertex is on a path from s to t
\square in-flow = out-flow for every vertex (except s, t)
\square flow along an edge cannot exceed the edge capacity
\square flows are positive

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

Why? Can you prove it?

35

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network

Base case: $\mathrm{S}_{\mathrm{s}}=\mathrm{s}$

- Flow is total from from s to t : therefore the total flow out of should be the flow
- All flow from s gets to \dagger
- every vertex is on a path from s to t
- in-flow = out-flow

Flow across cuts

The flow across ANY such cut is the same and is the current flow in the network
Inductive case: Consider moving a node x from S_{t} to S_{s}

Is the flow across the different partitions the same?

38

Flow across cuts

Consider any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink

The flow across ANY such cut is the same and is the current flow in the network

Flow across cuts

Inductive case: Consider moving a node x from S_{t} to S_{s}
cut $=\operatorname{left}-i n f l o w(x)-\operatorname{left}-$ outflow $(x) \quad$ cut $=$ right-outflow $(x)-\operatorname{right-inflow}(x)$

left-inflow $(x)+$ right-inflow $(x)=$ left-outflow $(x)+$ right-outflow $(x) \quad$ in-flow $=$ out-flow
left-inflow (x) - left-outflow $(x)=$ right-oufflow $(x)-$ right-inflow (x)

39

41

42

Capacity of a cut

The "capacity of a cut" is the maximum flow that we could send from nodes in S_{s} to nodes in S_{t} (i.e. across the cut)

Max Power

https://www.youtube.com/watch? $\mathrm{v}=$ BSVms6cT9nk

Capacity is the sum of the edges from S_{s} to S_{t}

- Any more and we would violate the edge capacity constraint
- Any less and it would not be maximal, since we could simply increase the flow

43

45

Quick recap

A cut is a partitioning of the vertices into two sets S_{s} and $S_{\mathrm{t}}=\mathrm{V}-\mathrm{S}_{\mathrm{s}}$

For any cut where $s \in S_{s}$ and $t \in S_{t}$, i.e. the cut partitions the source from the sink
\square the flow across any such cut is the same
\square the maximum capacity (i.e. flow) across the cut is the sum of the capacities for edges from S_{s} to S_{t}

Maximum flow

For any cut where $s \in S_{s}$ and $t \in S_{t}$
\square the flow across the cut is the same
\square the maximum capacity (i.e. flow) across the cut is the sum of the capacities for edges from S_{s} to S_{t}

We can do no better than the minimum capacity cut!

48

Maximum flow

For any cut where $s \in S_{s}$ and $t \in S_{t}$
\square the flow across the cut is the same
\square the maximum capacity (i.e. flow) across the cut is the sum of the capacities for edges from S_{s} to S_{t}

47

49

50

Algorithm idea

Search for a path with remaining capacity from sto \dagger

52

51

53

54

The residual graph

The residual graph G_{f} is constructed from G

For each edge e in the original graph (G):
\square if flow(e) < capacity(e)

- introduce an edge in G_{f} with capacity = capacity(e)-flow(e)
- this represents the remaining flow we can still push
\square if flow(e) >0
- introduce an edge in G_{f} in the opposite direction with capacity $=$ flow(e)
- this represents the flow that we can reroute/reverse

Algorithm idea

55

57

58

60

61

62

64

63

65

66

Ford-Fulkerson: is it correct?

Does the function terminate?
Every iteration increases the flow from s to \dagger

- Every path must start with s
- The path has positive flow (or it wouldn't exist)
- The path is a simple path (so it cannot revisit s)
- conservation of flow

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
while a simple path exists from s to t in G_{f}
send as much flow along path as possible
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges a simple path contains no repeated vertices
$\mathrm{G}_{\mathrm{f}}=$ residualGraph(G)
while a simple path exists from sto to G_{f} send as much flow along the path as possible $\mathrm{G}_{f}=$ residualGraph(G)
return flow

67

Ford-Fulkerson: is it correct?

Does the function terminate?
\square Every iteration increases the flow from s to t

- the flow is bounded by the min-cut

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
while a simple path exists from s to t in G_{f} send as much flow along path as possible $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$ return flow

69

Ford-Fulkerson: is it correct?

When it terminates is it the maximum flow?

Ford-Fulkerson($G, s, t)$
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
while a simple path exists from s to \dagger in G_{t} send as much flow along path as possible $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residualGraph(G)
while a simple path exists from s to t in G_{f}
send as much flow along path as possible
$G_{f}=$ residualGraph(G)
return flow

Ford-Fulkerson: is it correct?

When it terminates is it the maximum flow?
Assume it didn't

- We know then that the flow < min-cut
- therefore, the flow < capacity across EVERY cut
- therefore, across each cut there must be a forward edge in G_{f}
- thus, there must exist a path from s to t in G_{f}

$$
\text { - start at } \mathrm{s} \text { (and } \mathrm{A}=\mathrm{s} \text {) }
$$

- repeat until t is found
- pick one node across the cut with a forward edge
- add this to the path
- add the node to A (for argument sake)

ㅁ However, the algorithm would not have terminated... a contradiction

73

Ford-Fulkerson: runtime?	
$\begin{aligned} & \text { Ford-Fulkerson(} G, s, t \text {) } \\ & \text { flow }=0 \text { for all edges } \\ & \begin{array}{l} G_{f}=\text { residual } G r a p h(G) \\ \text { while a simple path exists from } s \text { to } t \text { in } G_{f} \\ \text { send as much flow along path as possible } \\ G_{f}=\text { residual } G_{r a p h}(G) \\ \text { return flow } \end{array} \end{aligned}$	- traverse the graph - at most add 2 edges for original edge $\theta(\mathrm{V}+\mathrm{E})=\theta(\mathrm{E})$ (all nodes exists on paths from s to t)

74

76

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(G) \quad-B F S$ or DFS
while a simple path exists from s to t in $G_{f} \quad-O(V+E)=O(E)$
send as much flow along path as possible
$\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow

Ford-Fulkerson: runtime?
$\left.\begin{array}{ll}\text { Ford-Fulkerson(} G, s, t) \\ \text { flow }=0 \text { for all edges } \\ G_{f}=\text { residual } G r a p h(~ \\ \text { G }\end{array}\right)$
times the loop will execute?

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow $=0$ for all edges
$\mathrm{G}_{\mathrm{f}}=$ residualGraph(G)
while a simple path exists from s to t in G_{f}

- max-flow!
- increases ever iteratio $\mathrm{G}_{\mathrm{f}}=$ residual $\operatorname{Graph}(\mathrm{G})$
return flow

Overall runtime? O(max-flow *E)

77

78

80

81

82

84

83

85

86

