11/8/22

Admin

[
Assignment 8 (how did it go?)

Assignment 9 (out later today)

Checkpoint 3: next Thursday!

ALL PAIRS SHORTEST PATHS

David Kauchak
CS 140 — Fall 2022

Shortest Paths Shortest Paths

What is the shortest path from A to E2

11/8/22

Shortest Paths

Shortest Paths

What algorithm would we use to calculate this?

5 6
Shortest Paths Shortest Paths
|] |
- Bellman-Ford (since the graph has negative edges) - Bellman-Ford (since the graph has negative edges)
- O(VE) - O(VE)
- Called a single-source shortest path algorithm. Why?
7 8

11/8/22

Shortest Paths

- Bellman-Ford (since the graph has negative edges)
- O(VE)
- Calculate all paths from a single vertex.

Shortest Paths

What is the shortest path from A to C2
If we already calculated A to E using Bellman-Ford
do we need to do any work?

9 10
Shortest Paths Shortest Paths

| |
No new calculations! What is the shortest path from D 15) Ce
Bellman-Ford calculates all shortest paths starting If we already calculated A to E using Bellman-

Ford do we need to do any work?

at A.

11 12

11/8/22

Shortest Paths All pairs shortest paths
[==
All pairs shortest paths: calculate the shortest paths
between all vertices
Different source.
Have to run Bellman-Ford again!
13

14

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths
between all vertices

Easy solution?

All pairs shortest paths
[

All pairs shortest paths: calculate the shortest paths
between all vertices

Run Bellman-Ford from each vertex!

Running time (in terms of E and V)2

15

16

11/8/22

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths
between all vertices

Run Bellman-Ford from each vertex!
O(V2E)

¢ Bellman-Ford: O(VE)
* V calls, one for each vertex

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d; = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

17

18

Floyd-Warshall: key idea Floyd-Warshall: key idea
[==
dij* = shortest path from vertex i to vertex j dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} using only vertices {1, 2, ..., k}
. 22
Whatts chs ® What is da %2 What is d1522
What is d15°2
19 20

11/8/22

Floyd-Warshall: key idea Floyd-Warshall: key idea
[|
dif* = shortest path from vertex i to vertex j d;f* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} using only vertices {1,2, ..., k}
di52=9. Can only use 2. What is d152
21 22
Floyd-Warshall: key idea Floyd-Warshall: key idea
[|
dij* = shortest path from vertex i to vertex j dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} using only vertices {1, 2, ..., k}
dis52 = 1. Can’t use vertex 4. What is d4142
23 24

11/8/22

Floyd-Warshall: key idea Floyd-Warshall: key idea
| ==
dij* = shortest path from vertex i to vertex j dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} using only vertices {1,2, ..., k}
d41* = . No possible path. What is d33°2
25 26
Floyd-Warshall: key idea Floyd-Warshall: key idea
| ==
d,/‘ = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k} Label all vertices with a number from 1 to V
dl-jk = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}
If we want all possibilities, how many values are there
(i.e. what is the size of d;¥)2
ds3°= 0. di* = 0 for all i.
27 28

11/8/22

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

dl-j/" = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

V3

i: all vertices
J: all vertices

k: all vertices

29

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d
using only vertices {1,2, ..., k}

What is d;;"2

* Distance of the shortest path from i to j

Uk = shortest path from vertex [to vertex j

If we can calculate this, for all (i,)), we're done!

30

31

Recursive relationship

dt/'/(-

shortest path from vertex [to vertex j
using only vertices {1,2, ..., k}

Assume we know di,"

How can we calculate d[/-k'*'l, i.e. shortest path now

including vertex k+12 (Hint: in terms of d,/'/‘)

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

Recursive relationship
[

d,/‘ = shortest path from vertex i to vertex j

using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

32

11/8/22

Recursive relationship

dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 — dijk

Recursive relationship

dij* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

33

34

Recursive relationship

d,/‘ = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+1 =2

some vertices {1...k} some vertices {1...k}

What is the cost of this path?

Recursive relationship

d,/‘ = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di* ™t = digen) + dgern;©

some vertices {1...k} some vertices {1...k}

iger1)* + ey

35

36

11/8/22

Recursive relationship
fr

dif* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di/‘k+l =2

How do we combine these two options?

Recursive relationship
[

d;f* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

di** = min(dijk, digesny + dgesn);)

Pick whichever is shorter

37

38

Floyd-Warshall(G = (V,E,W)):
L=w // initialize with edge weights
Floyd-Warshall Sy el i edge weig
| fori=1toV
forj=1toV
Calculate dj* for increasing k, i.e. k = 1to V ik = min(ds* 1, i~ + dg,)
Floyd-Warshall(G = (V,E,W)): return dV
d°=w // initialize with edge weights k=0 k=1
fork=1toV T2 3 4 5 1 2 3 4 5
fori=11oV 110 4 -1 © o 110 4 -1 o o
ert= ° 2] o Q0 o o 5 2]l 0 0 o o 5§
forj=1toV 3l 3 0 2 2 3l 3 0 2 2
.) - k-1 _ N ;
dijk = min(d* "%, dy. + dkjk 1) 4| @ © o 0 -3 4 © o o 0 -3
5 o 1 oo 0 5 © o 1 © 0
return d” adjacency matrix no change
39 40

10

11/8/22

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*1, dy "+ die

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(dg* 1, dg " + dy

dijk = min(di*2, dy " + die)

dijk = min(di*?, dy T + di)

return d" return d”
k=1 =2 k=1 k=2
1 2 3 4 5 2 3 4 5 12 3 4 5 1 2 3 4 5

0 4 -1 o o 1 4 -1 o (2 0 4 -1 o (x 1 0 4 -1 «'9

o () o o 5 2 o () o o (5 2

o 3 0 2 2 3 o 3 0 2 2 3

o oo o (0 =3 4 w oo o (O =3 4

© oo | o 0 5 o oo 1 o 0 5

minimum
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights L=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV

return d” return dV
k=2 =3 k=2 k=3
12 3 4 5 2 3 4 5 12 3 4 5 12 3 4 5
0 4 -1 o 9 1 0 4 <1) o 9 1 0 2
o () o© o 5 2 ©w 0 o o 5 2
o 3 0 2 2 3 o 3,0 2 2 3
w » » 0 -3 4 ® ® o 0 -3 4
o oo] o 0 5 o oo | o 0 5
minimum Found a shorter path!
43 44

11

11/8/22

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*1, dy "+ die

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(dg* 1, dg " + dy

dijk = min(di*2, dy " + die)

dijk = min(di*?, dy T + di)

return d" return d”
k=2 =3 k=2 =3
1 2 3 4 5 1 2 3 12 3 4 5 1 2 3 4
0 4 -1 o 9 1 0 2 0 4 -1 o 9 1 0 2 -1°2
o () o o 5 2 o () o o 5 2
o 3 0 2 2 3 o 3 0 2 2 3
o oo o (0 =3 4 w oo o (O =3 4
© oo | o 0 5 o oo 1 o 0 5
45 46
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights L=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV

return d” return d”
k=2 =3 k=2 =3
1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 4
0 4 <l (o 9 1 0 2 -1 0 4 -1 o 9 1 02 -11
o () o o 5 2 o () o o 5 2
o 3 0 (2 2 3 o 3 0 2 2 3
o oo oo (0 =3 4 o oo o (O =3 4
o oo] o 0 5 o oo | o 0 5
minimum
47 48

12

11/8/22

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d" return d”
k=2 =3 k=2 k=3
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5
110 4 -1 o 9 T 10 2 -1 142 110 4 &1 o (9 0 2 -1 101
2| o 0 o o 5 2 2 0 0 o ow 5 2
3w 3 0 2 2 3 3o 3 0 2 (2 3
4 0 0 o 0 -3 4 4 0 0 o 0 -3 4
5/ 00 o0 1 o 0 5 500 0 1 o 0 5
minimum Found a shorter path!
49 50

Floyd-Warshall(G = (V,E,W)):
do=w
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*2, dy " + die)

// initialize with edge weights

Floyd-Warshall(G = (V,E,W)):

=W // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(di*?, dy T + di)

return d” return d”
k=2 =3 k=3 k=4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
110 4 -1 o 9 0 2 -1 1 1 1 0 2 -1 1 1 1 02 -111%2
2 0o) o o 5 2 o 0 o o 5 2 ©o O o o 5 2
3w 3 0 2 2 3]l 3 0 2 2 3 v 3 0 2 2 3
4| 0o 0o o (O =3 4 o oo oo (O =3 4 o o o (O =3 4
5/ 00 o0 1 o 0 5 o oo] o 0 5 o o 1 o 0 5

51 52

13

11/8/22

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights do=w // initialize with edge weights

fork=1toV fork=1toV

fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d" return d”
k=3 k=4 k=3 k=4
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5
1|10 2 -1(1) 1 10 2 -1 1 £2 1|10 2 -1 1 1 110 2 -1 1 -2
2 ©o) o o 5 2 2 o () o o 5 2
3 o 3 0 2 2 3 3 o 3 0 2 2 3
4 | 0 o o 0 £3 4 4 | 0 o o 0 -3 4
5 © oo 1 o 0 5 5 o oo 1 o 0 5
minimum Found a shorter path!

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights L=w // initialize with edge weights

fork=1toV fork=1toV

fori=1toV fori=1toV
forj=1toV forj=1toV

dijk = min(di*2, dy " + die)

dijk = min(di*?, dy T + di)

return d” return d”
k=3 k=4 k=3 k=4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 0 2 -1 1 1 1 02 -1 1 =2 1 0 2 -1 1 1 1 02 -1 1 =2
2 o () o o 5 2 o () o o 5 2 ©o O o o 5 2 o () o o 5
3 o 3 0 2 2 3 o 3 0 2 @ 3 o 3 0 (2 2 3 o 3 0 2 =1
4 o oo oo (0 =3 4 4 o oo o (O =3 4
5 o oo] o 0 5 5 o oo | o 0 5
minimum Found a shorter path!
55 56

14

11/8/22

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*1, dy "+ die dijk = min(di*1, dy T + di;)
return d” return d”
k=3 k=4 k=4 k=5
1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5
|10 2 -1 1 1 10 2 -1 1 =2 110 2 -1 1 =2 110 2 -1 1 =2
2 o (0 o o 5§ 2 w () o o 5§ 2 ©o () o o 5 2 o 0 (7 (9 5
3 o 3 0 2 2 3o 3 0 2 -1 3] o 3 0 2 -1 3| 3 0 2 -1
4 | ©® © o (0 =3 4| © © o (O =3 4| 0 o0 o (0 -3 4 |0l =2 0 -3
5 o oo | o 0 5 0 1 oo 0 5 o oo] o 0 5 o 0o 1 oo 0
Done!
57 58
Floyd-Warshall analysis Floyd-Warshall analysis
[|

Is it correct?

Floyd-Warshall(G = (V,E,W)):

d&=w // initialize with edge weights

fork=1toV
fori=1toV
forj=1toV

dijk = min(dy*, dy " + i Y

return d”

Is it correct?

Any assumptions?

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights

fork=1toV
fori=1toV
forj=1toV

dijk = min(dy* 1, dy " + di <)

return d”

59

60

15

11/8/22

Floyd-Warshall analysis
fr

Is it correct?
Assuming the graph has no negative cycles!

What happens if there is a negative cycle?
Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(de*1, dy T + di Y

return d

Floyd-Warshall analysis

If the graph has a negative weight cycle, at the end, at

least one of the diagonal entries will be a negative
number, i.e., we there’s a way to get back to a vertex

using all of the vertices that results in a negative weight

1 2 3 4 5
1 02 -1 1 =2
2 o0 7 9 5
3 o 3 (0 2 -1
4 o 1 =20 -3
5 © o] o (0

61 62
Floyd-Warshall analysis Floyd-Warshall analysis
[|
Run-time? Run-time: B(V?)
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,EW)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork=1toV fork=1toV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*=, dy " + di 7Y dijk = min(di*%, dy.* 7t + di ;<)
return d” return d”
63 64

16

11/8/22

Floyd-Warshall analysis
fr

Space usage?

Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
fork=1toV
fori=1toV
forj=1toV

dijk = min(d*~1, dy "+ di K

return d

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d

ijk = shortest path from vertex i to vertex j

using only vertices {1, 2, ..., k}

If we want all possibilities, how many values are there
(i.e. what is the size of d;;*)2

65

66

Floyd-Warshall: key idea
fr

Label all vertices with a number from 1 to V

d,v/" = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

V3
e i: all vertices
¢ j:all vertices

Can we do better?

¢ k: all vertices

Floyd-Warshall analysis
[

Space usage: B(V?)
Only need the current value and the previous

Floyd-Warshall(G = (V,EW)):
do=w // initialize with edge weights

fork=1toV
fori=1toV
forj=1toV

dijk = min(dy*?, dy ! + di)

return d”

67

68

17

11/8/22

All pairs shortest paths
fr

V * Bellman-Ford: O(V2E)

Floyd-Warshall: 8(V3)

All pairs shortest paths
[

calculate the shortest paths between all points

Easy solution?

All pairs shortest paths for positive weight graphs:

69

70

All pairs shortest paths
fr

calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)2

All pairs shortest paths for positive weight graphs:

All pairs shortest paths

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Run Dijsktras from each vertex!

O(V2log V + V E)
* V calls do Dijkstras
* Dijkstras: O(V log V + E)

71

72

18

11/8/22

All pairs shortest paths

V * Bellman-Ford: O(V2E)
Floyd-Warshall: 8(V3)

V * Dijkstras: O(V2 log V + V E)

Is this any better?

All pairs shortest paths
[

V * Bellman-Ford: O(V2E)
Floyd-Warshall: 8(V3)

V * Dijkstras: O(V2 log V + V E)

If the graph is sparse!

73

74

All pairs shortest paths

All pairs shortest paths for positive weight graphs:

calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

Johnson’s: key idea
o

that shortest paths are preserved

Reweight the graph to make all edges positive such

75

76

19

11/8/22

Lemma
[

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) =w(u,v)+h(u)-h(v)

The shortest paths are preserved

Lemma: proof W) =w(u,v)+h(u)=h(v)
e

Lets, v;, v, ..., v, t be a path from s to t

The weight in the reweighted graph is:

WS, Vs Ve 1) = WS,V +R(8) = ROV + (V... v, 1)
=w(s,v)+h($)=h(v) # W, v, +h(v) = h(v,) + W(V,,....v,, 1)
=w(s,v)+h($)+ W, v,) = h(v,) + W(V,,...,v,,1)

=w(s,v) +h(8) + WV,) = h(0,) ¥ W5, v,) # h(v,) = B(y) + W(Vs,.ey vy, 1)

=w(s,v)+h(s)+ Wy, v,) + w(v,,v,) = h(v) + W(Vs,..., v, 1)

=W(S,V,,ees V1) + h(s) - h(t)

77

78

Lemma: proof
=

WS, Vyseens Vi) = WS,V ey V1) + A(S) = B(E)

Claim: the weight change preserves shortest paths, i.e. if a path was the

shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

Justification?

Lemma: proof

WS, Vyseees Vi) = WS, Ve Vo 1) + B(8) = h(1)

Claim: the weight change preserves shortest paths, i.e. if a path was the

shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

h(s) = h(t) is a constant and will be the same for all
paths from s to t, so the absolute ordering of all paths
from s to t will not change.

79

80

20

11/8/22

Lemma

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) =w(u,v)+h(u)-h(v)

The shortest paths are preserved

Big question: how do we pick h?

Selecting h
[

Need to pick h such that the resulting graph has all
weights as positive

w(u,v) = w(u,v)+h(u) - h(v)

81 82
Create G’
Johnson’s a Igorifhm run Bellman-Ford(G’,s)
if no negative-weight cycle
[reweight edges in G with h(v)=shortest path from s to v
Create G’ with one extra node s with O weight edges to all nodes run Dilstra’s from every vertex
Bell Ford(G's) reweight shortest paths based on G
run Bellman-Ford(G',s
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G
83 84

21

11/8/22

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:2
S=>B:
S2C:
S=>D:
SDE:

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

S>A:0
S=>B:
SC:
S=>D:
S=DE:

85

86

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SA:0
S=>B: 2
S>C:
S=>D:
S=>E:

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SA:0
S=>»B: -2
S>C:
S=>D:
S=>E:

87

88

22

11/8/22

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

SDA:0
S=>B: -2
S2C: 0
S=>D: 0
S=DE: -3

S=>A:0
S=>B: -2
S=2C: 0
S=D: 0
S=>E: -3

89

90

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
S+ 0 - -2

91

92

23

11/8/22

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

Create G
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
2 + -2 -0

]

93

94

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)
4 +0 -0

'

95

96

24

11/8/22

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

-2 0

Create G
run Bellman-Ford(G’,s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v) + h(u)— h(v)
5 +0 - -3
-2 °

97

98

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) = w(u,v)+h(u)-h(v)

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

99

100

25

11/8/22

Create G’

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Create G

run Bellman-Ford(G’,s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

101

102

A=>B: -1
A=DC: 2

ADD: 1
A=DE: -2

Selecting h
[

Need to pick h such that the resulting graph has all
weights as positive

Create G’ with one extra node s with O weight edges to all nodes
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that
reweighted graph has only positive edges)?

103

104

26

11/8/22

Reweighted graph is positive Reweighted graph is positive
|] |
Take two nodes u and v Take two nodes u and v
h(u) shortest distance from s to u h(u) shortest distance from s to u
h(v) shortest distance from s to v h(v) shortest distance from s to v
Claim: A(v)=h(u)+w(u,v) Claim: h() =< h(u)+w(u,v)
Why# If this weren't true, we could have made a shorter path s to v
using u
... but this is in contradiction with how we defined h(v)
105 106
Reweighted graph is positive Reweighted graph is positive
|] |
Take two nodes u and v Take two nodes u and v
h(u) shortest distance from s to u h(u) shortest distance from s to u
h(v) shortest distance from s to v h(v) shortest distance from s to v
h(v) = h(u)+w(u,v) h(v) =< h(u) +w(u,v)
w(u,v)+h(u)-h(v)=0 w(u,v)+h(u)-h(v)=0
What is this? w(u,v) = w(u,v)+h(u) - h(v)
w(u,v) =w(u,v)+h(u)-h(v)=0 :(')'::;z;’;ighh in reweighted graph are
107

108

27

11/8/22

Johnson’s algorithm
fr

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

Johnson’s algorithm
[

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

(V)
oMV?)

B(E)
O(V2logV+VE)
8(E)

109

All pairs shortest paths
fr

V * Bellman-Ford: O(V 2E)
Floyd-Warshall: 6(V3)

Johnson’s: O(V2 log V + V E)

111

110

28

