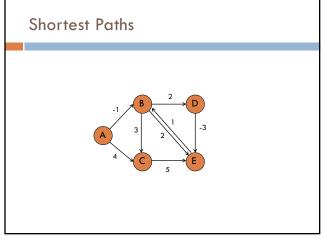


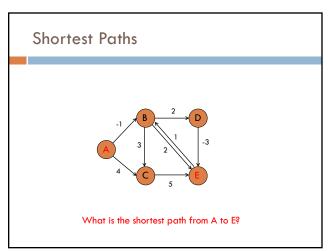
Admin

Assignment 8 (how did it go?)

Assignment 9 (out later today)

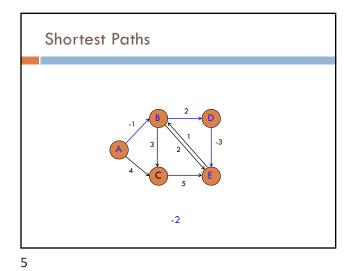
Checkpoint 3: next Thursday!

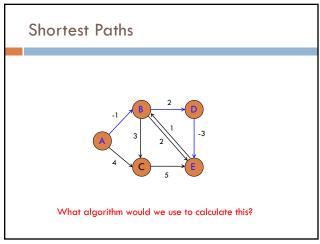


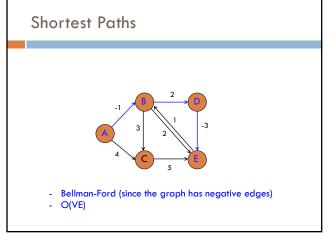


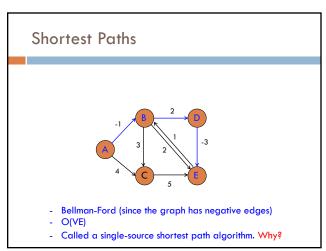
4

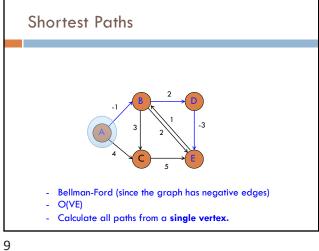
3

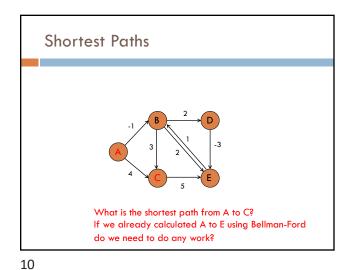


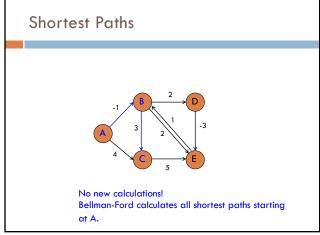


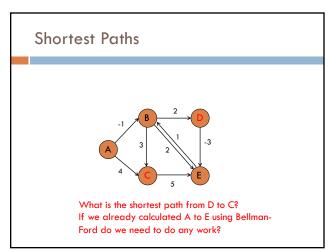


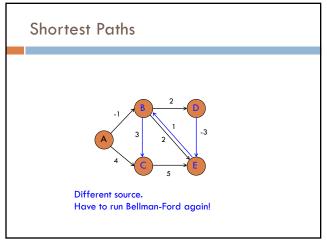


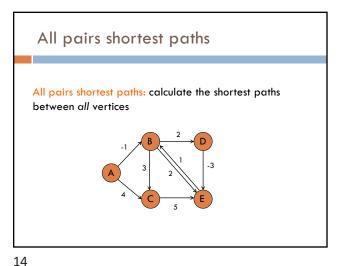












All pairs shortest paths:

All pairs shortest paths: calculate the shortest paths between all vertices

Easy solution?

All pairs shortest paths: calculate the shortest paths between all vertices

Run Bellman-Ford from each vertex!

Running time (in terms of E and V)?

15 16

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths between all vertices

Run Bellman-Ford from each vertex!

$O(V^2E)$

- Bellman-Ford: O(VE)
- V calls, one for each vertex

Floyd-Warshall: key idea

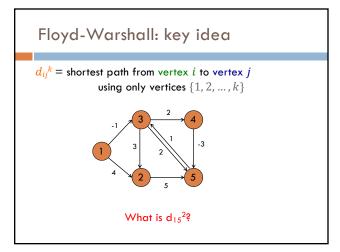
Label all vertices with a number from 1 to $\ensuremath{\text{V}}$

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

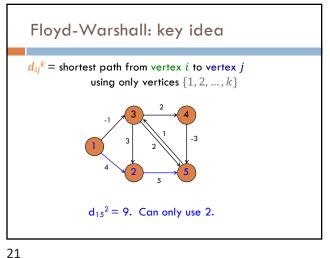
17 18

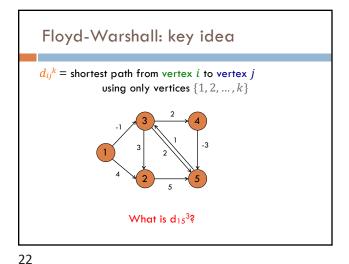
Floyd-Warshall: key idea d_{ij}^k = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$ What is d_{15}^{2} ? What is d_{41}^{4} ?

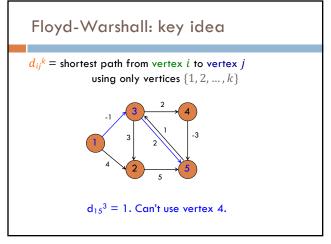
What is d₁₅³?

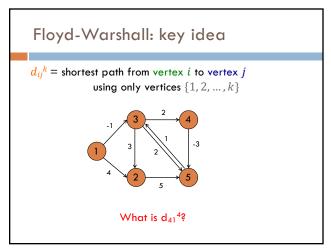


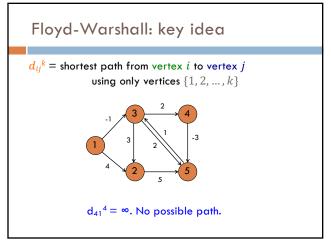
19 20

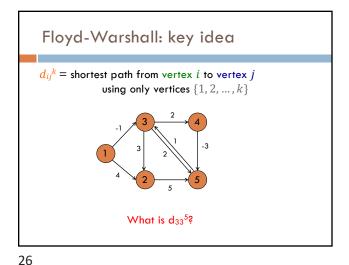














Floyd-Warshall: key idea Label all vertices with a number from 1 to V $d_{ij}{}^k$ = shortest path from vertex i to vertex j using only vertices $\{1,2,\ldots,k\}$ If we want all possibilities, how many values are there (i.e. what is the size of $d_{ij}{}^k$)?

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

V

- i: all vertices
- j: all vertices
- k: all vertices

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

What is d_{ij}^{V} ?

30

- Distance of the shortest path from i to j
- If we can calculate this, for all (i,j), we're done!

29

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Assume we know d_{ii}^{k}

How can we calculate d_{ij}^{k+1} , i.e. shortest path now including vertex k+1? (Hint: in terms of d_{ij}^k)

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path
- $d_{ij}^{k+1} = ?$

31 32

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = d_{ij}^k$$

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

34

33

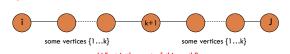
Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$



What is the cost of this path?

Recursive relationship $d_{ij}{}^k = \text{shortest path from vertex } i \text{ to vertex } j \\ \text{using only vertices } \{1, 2, \dots, k\}$ Two options:
1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path $d_{ij}{}^{k+1} = d_{i(k+1)}{}^k + d_{(k+1)j}{}^k$ some vertices $\{1...k\}$ $d_{i(k+1)}{}^k + d_{i(k+1)}{}^k$

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

How do we combine these two options?

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = \min(dijk, d_{i(k+1)}^{k} + d_{(k+1)j}^{k})$$

Pick whichever is shorter

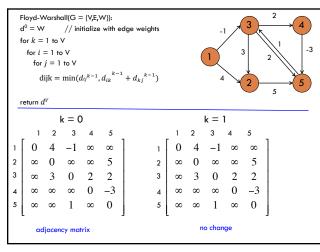
37

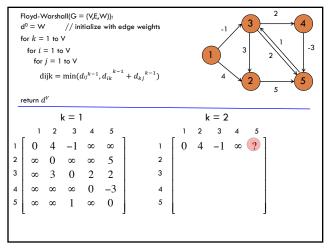
38

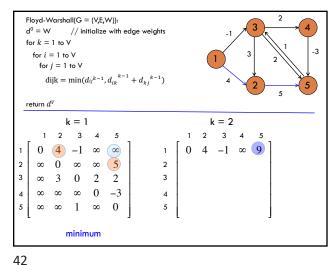
Floyd-Warshall

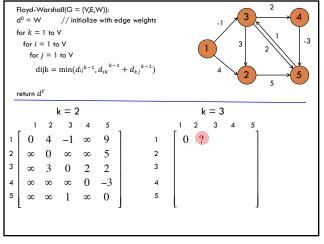
Calculate d_{ij}^{k} for increasing k, i.e. k = 1 to V

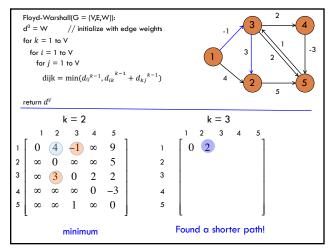
return $d^{\it V}$

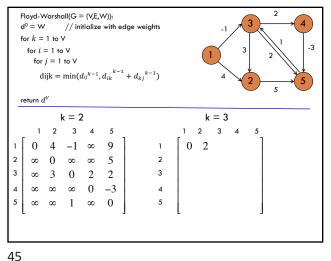


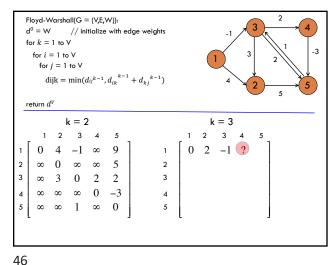




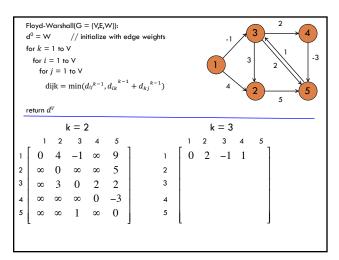


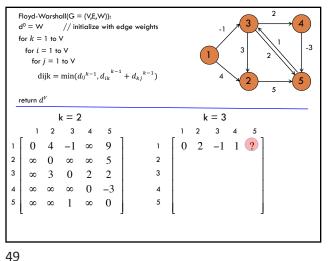


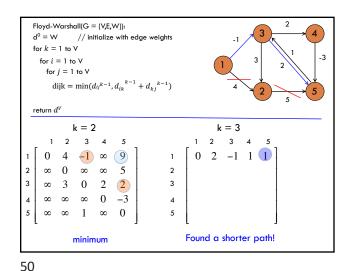




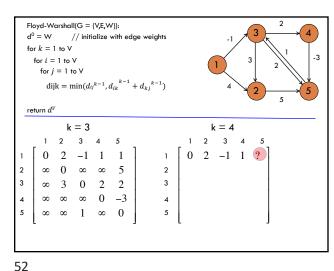
```
Floyd-Warshall(G = (V,E,W)):
  d^0 = W // initialize with edge weights
  \text{for } k = 1 \text{ to V}
   for i = 1 to V
     for j = 1 to V
      dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
 \mathsf{return}\ d^{\mathit{V}}
             k = 2
                                                      k = 3
                                                1 2 3 4 5
      1 2 3 4 5
                                             \begin{bmatrix} 0 & 2 & -1 & 1 \end{bmatrix}
1 0 4 1 0 9
                                      1
2
    \infty 0 \infty \infty 5
                                        2
3
    \infty 3 0 2 2
                                        3
4
5
    \infty \infty \infty 0 -3
                                         4
    \infty \infty 1 \infty
                          0
             minimum
```

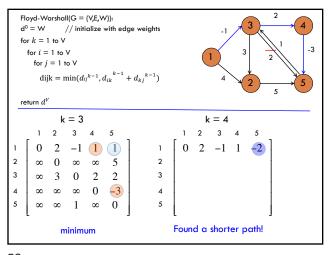


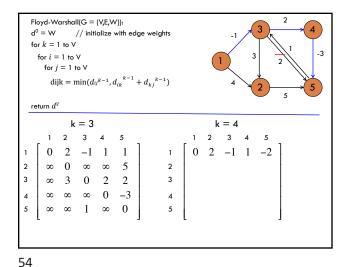


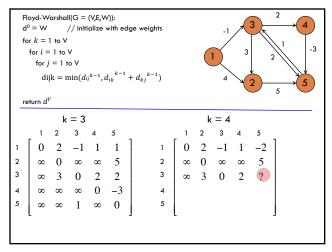


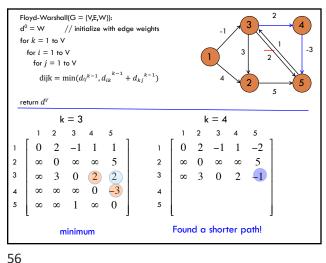
```
Floyd-Warshall(G = (V,E,W)):
 d^0 = W // initialize with edge weights
 for k = 1 to V
  for i = 1 to V
    for j = 1 to V
     dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
 \mathsf{return}\ d^V
          k = 2
                                          k = 3
                                     1 2 3 4
     1 2 3 4 5
1 0 4 −1 ∞ 9
                              1 0 2 -1 1 1
2
                               2 ∞ 0 ∞ ∞
   \infty 0 \infty \infty 5
                                                     5
                               3
                                   ∞ 3 0 2 2
   ∞ 3 0
                2 2
4
   ∞ ∞ ∞ 0 -3
                                    \infty \infty \infty 0 -3
                               4
5
   \infty \infty 1 \infty
                    0
                                    \infty \infty 1 \infty
```

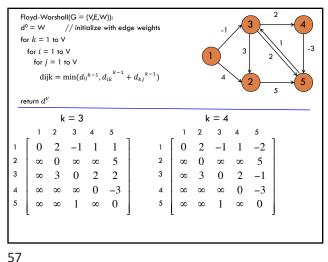








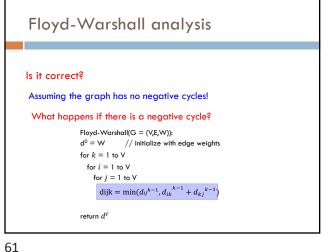


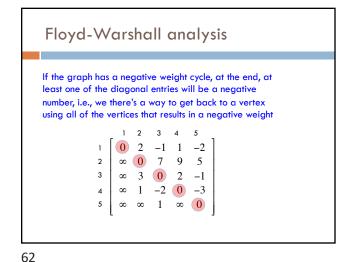


```
Floyd\text{-}Warshall(G=(V,\!E,\!W))\text{:}
d^0 = W
         // initialize with edge weights
for k = 1 to V
 for i = 1 to V
   \text{for } j=1 \text{ to V}
    dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
\mathsf{return}\ d^{\mathit{V}}
         k = 4
                                            k = 5
    1 2 3 4 5
                                      1 2 3 4 5
                                1 0
  0 2 -1 1 -2
                                          2 -1 1 -2
  \infty 0 \infty \infty 5
                                     ∞ 0 7 9 5
                                2
  ∞ 3 0 2 -1
                                3
                                     ∞ 3 0 2 -1
                                4 ∞ 1 -2 0 -3
  \infty \infty \infty 0 -3
  \infty \infty 1 \infty 0
                                5 | ∞ ∞ 1 ∞ 0
                          Done!
```

```
Floyd-Warshall analysis
Is it correct?
                Floyd-Warshall(G = (V,E,W)):
                d^0 = W // initialize with edge weights
                for k = 1 to V
                  for i = 1 to V
                    for j = 1 to V
                     dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
                \mathsf{return}\ d^{\mathit{V}}
```

```
Floyd-Warshall analysis
Is it correct?
Any assumptions?
                Floyd-Warshall(G = (V,E,W)):
                d^0 = W
                            // initialize with edge weights
                for k = 1 to V
                  for i = 1 to V
                    for j = 1 to V
                     dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
                \mathsf{return}\ d^{\mathit{V}}
```





```
Floyd-Warshall analysis
Run-time?
               Floyd-Warshall(G = (V,E,W)):
               d^0 = W // initialize with edge weights
               for k = 1 to V
                 for i = 1 to V
                   for j = 1 to V
                     dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
                \mathsf{return}\ d^{\mathit{V}}
```

```
Floyd-Warshall analysis
Run-time: \theta(V^3)
               Floyd-Warshall(G = (V,E,W)):
               d^0 = W
                          // initialize with edge weights
               for k = 1 to V
                 for i = 1 to V
                 for j = 1 to V
                     {\rm dijk} = \min(d_{ij}^{k-1}, {d_{ik}}^{k-1} + {d_{kj}}^{k-1})
```

Floyd-Warshall analysis Space usage? Floyd-Warshall(G = (V,E,W)): $d^0 = W // \text{ initialize with edge weights}$ for k = 1 to Vfor i = 1 to V for <math>j = 1 to V $dijk = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$ return d^V

Floyd-Warshall: key idea Label all vertices with a number from 1 to V $d_{ij}{}^k = \text{shortest path from vertex } i \text{ to vertex } j \text{ using only vertices } \{1, 2, \dots, k\}$ If we want all possibilities, how many values are there (i.e. what is the size of $d_{ij}{}^k$)?

66

65

Floyd-Warshall: key idea Label all vertices with a number from 1 to V $d_{ij}{}^k$ = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$ V³ • i: all vertices • j: all vertices • k: all vertices

```
Floyd-Warshall analysis

Space usage: \theta(V^2)

Only need the current value and the previous

Floyd-Warshall(G = (V,E,W)):
d^0 = W // initialize with edge weights
for k = 1 to V
for i = 1 to V
dijk = \min(d_y^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
return d^V
```

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

All pairs shortest paths

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Easy solution?

69

70

All pairs shortest paths

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)?

All pairs shortest paths

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

 $O(V^2 \log V + V E)$

- V calls do Dijkstras
- Dijkstras: O(V log V + E)

71

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

 $V * Dijkstras: O(V^2 log V + V E)$

Is this any better?

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

 $V * Dijkstras: O(V^2 log V + V E)$

If the graph is sparse!

73

74

All pairs shortest paths

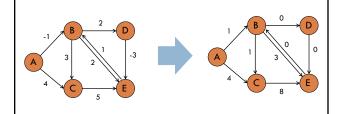
All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

Johnson's: key idea

Reweight the graph to make all edges positive such that shortest paths are preserved



Lemma

77

let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

The shortest paths are preserved

Lemma: proof $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

Let s, v_1 , v_2 , ..., v_k , t be a path from s to t

The weight in the reweighted graph is:

78

$$\begin{split} \hat{w}(s,v_1,...,v_k,t) &= w(s,v_1) + h(s) - h(v_1) + \hat{w}(v_1,...,v_k,t) \\ &= w(s,v_1) + h(s) - h(v_1) + w(v_1,v_2) + h(v_1) - h(v_2) + \hat{w}(v_2,...,v_k,t) \\ &= w(s,v_1) + h(s) + w(v_1,v_2) - h(v_2) + \hat{w}(v_2,...,v_k,t) \end{split}$$

$$= w(s, v_1) + h(s) + w(v_1, v_2) - h(v_2) + w(v_2, v_3) + h(v_2) - h(v_3) + \hat{w}(v_3, ..., v_k, t)$$

$$= w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) - h(v_3) + \hat{w}(v_3, ..., v_k, t)$$
...
$$= w(s, v_1, ..., v_k, t) + h(s) - h(t)$$

Lemma: proof

 $\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

Justification?

Lemma: proof

 $\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

h(s)-h(t) is a constant and will be the same for all paths from s to t, so the absolute ordering of all paths from s to t will not change.

Lemma

81

let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

The shortest paths are preserved

Big question: how do we pick h?

Selecting h

Need to pick h such that the resulting graph has all weights as positive $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

82

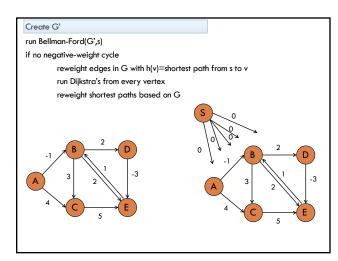
Johnson's algorithm

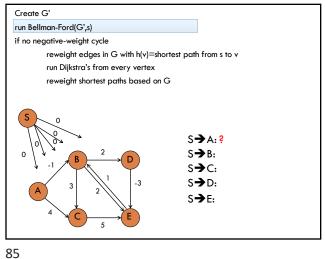
Create G' with one extra node s with 0 weight edges to all nodes run Bellman-Ford(G',s)

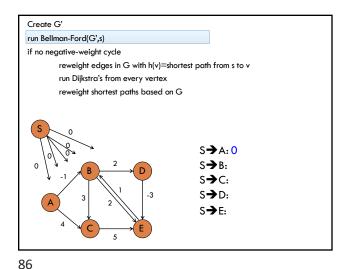
if no negative-weight cycle

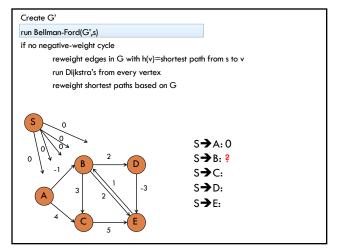
reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex

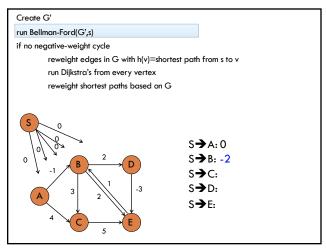
reweight shortest paths based on $\ensuremath{\mathsf{G}}$

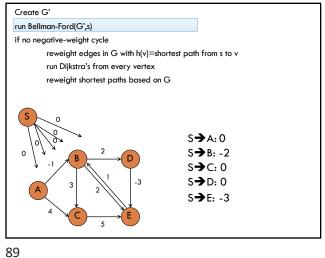


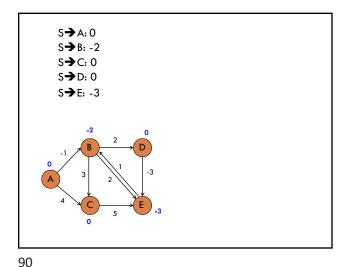


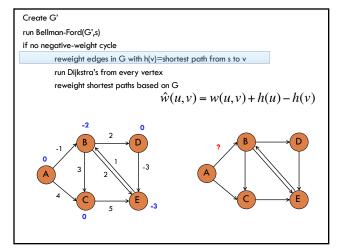


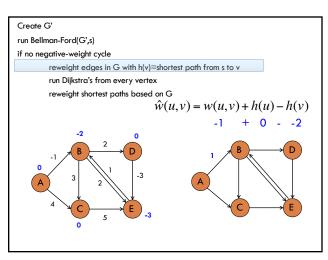


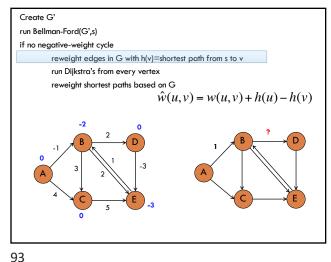


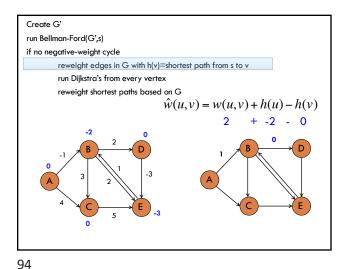


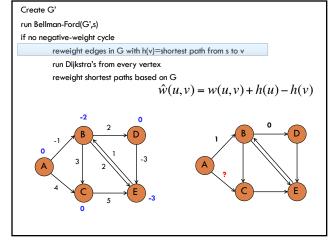


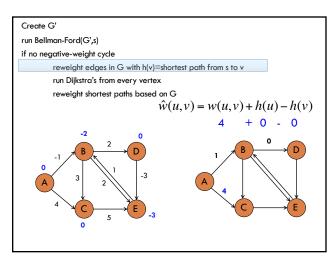


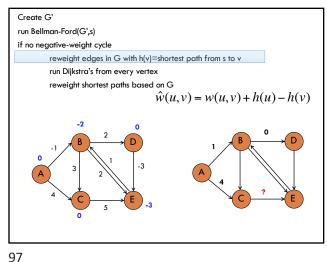


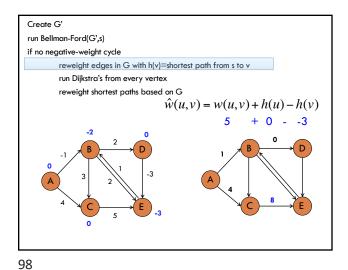


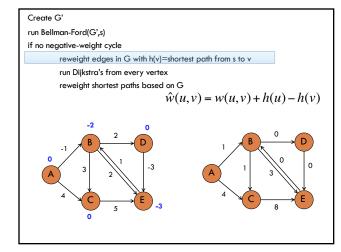


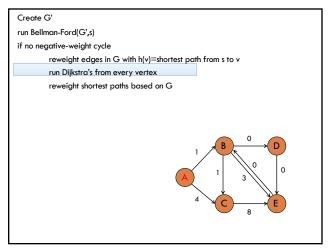


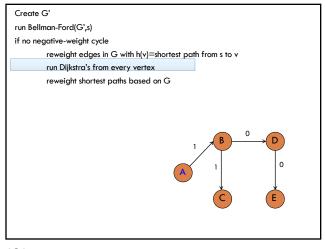


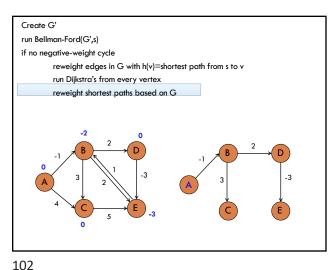


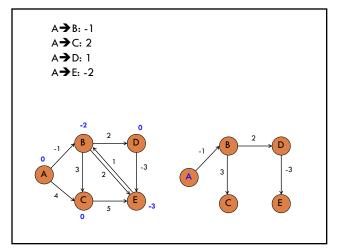










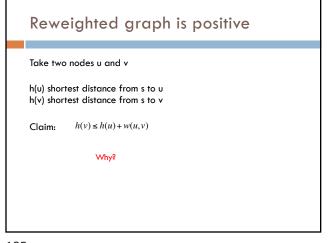


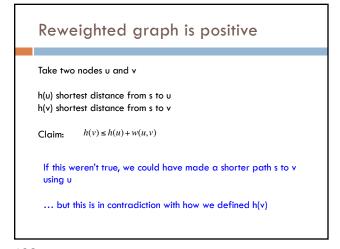
Selecting h

Need to pick h such that the resulting graph has all weights as positive

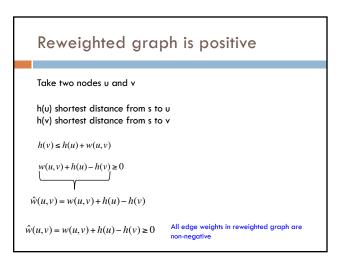
Create G' with one extra node s with 0 weight edges to all nodes run Bellman-Ford(G',s) if no negative-weight cycle reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that reweighted graph has only positive edges)?





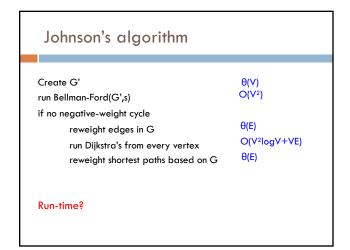
Reweighted graph is positive Take two nodes u and v h(u) shortest distance from s to u h(v) shortest distance from s to v $h(v) \le h(u) + w(u, v)$ $w(u, v) + h(u) - h(v) \ge 0$ What is this?



Johnson's algorithm

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G
run Dijkstra's from every vertex
reweight shortest paths based on G

Run-time?



109 110

All pairs shortest paths V* Bellman-Ford: O(V²E) Floyd-Warshall: θ(V³) Johnson's: O(V² log V + V E)