

1

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

3

Connectedness

Given an undirected graph, for every node $u \in V$, can we reach all other nodes in the graph? Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark
nodes as we visit them. If we visit all nodes, return true, otherwise false.

Running time: $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Strongly connected

Given a directed graph, can we reach any node v from any other node u?

Can we do the same thing?

5

Strongly connected

Strongly-Connected(G)

- Run DFS-Visit or BFS from some node u
- If not all nodes are visited: return false
- Create graph G^{R}
- Run DFS-Visit or BFS on G^{R} from node u
- If not all nodes are visited: return false
- return true

6

Is it correct?

What do we know after the first pass?

- Starting at u, we can reach every node

What do we know after the second pass?
\square All nodes can reach u. Why?

- We can get from u to every node in G^{R}, therefore, if we reverse the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node. Given any two nodes s and t we can create a path through u

8

9

11

10

12

13

15

14

16

17

19

18

20

23

24

27

28

31

32

33

35

34

36

39

40

Is Dijkstra's algorithm correct?

Invariant: For every vertex removed from the heap, $\operatorname{dist}[v]$ is the actual shortest distance from s to v

```
Dijkstra(G,s)
1 for all v\inV
2 (list[v]}\leftarrow+\infty prev[v]\leftarrow\mathrm{ null ( proof?
dist[s]}\leftarrow
Q\leftarrowMakeHeap(V)
while!Empty (Q)
u
    if dist[v]>\operatorname{dist}[u]+w(u,v)
        dist [v]}\leftarrow\operatorname{dist}[u]+w(u,v
        DecreaseKey (Q,v,dist[v])
        prev[v]}\leftarrow
```

41

Running time?

Dijkstra (G, s)
1 for all $v \in V$
$\operatorname{dist}[v] \leftarrow \infty$
$\underset{\text { dist }[s] \leftarrow 0}{ } \stackrel{\text { prev }[v] \leftarrow \text { null }}{ }$
$Q \leftarrow \operatorname{MakeHeap}(V)$
while ! $\operatorname{Empty}(Q)$
$u \leftarrow \operatorname{ExtractMin}(Q)$
for all edges $(u, v) \in E$
if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)$
$\operatorname{DecreaseKey}(Q, v, \operatorname{dist}[v])$
$\operatorname{prev}[v] \leftarrow u$
prev $[v] \leftarrow u$

43

Is Dijkstra's algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v

- The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

42

Running time?	
```Dijkstra( \(G, s\) ) for all \(v \in V\) \(\operatorname{dist}[v] \leftarrow \infty\) prev \([v] \leftarrow\) null dist \([s] \leftarrow 0\) \(5 \quad Q \leftarrow \operatorname{MakeHeap}(V)\) while !EMPTY \((Q)\) \(u \leftarrow \operatorname{ExtractMin}(Q)\) for all edges \((u, v) \in E\) if \(\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)\) \(\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)\) \(\operatorname{DecreaseKey}(Q, v, \operatorname{dist}[v])\) prev \([v] \leftarrow u\)```	1 call to MakeHeap

44


45

47



46


48


49


51

Running time?						
Depends on the heap implementation						
	1 MakeHeap	\|V	ExtractMin	\|E	DecreaseKey	Total
Array	$\mathrm{O}(\mathrm{VI})$	$\mathrm{O}\left(\|\mathrm{V}\|^{2}\right)$	O(\|E])	$\mathrm{O}\left(\|\mathrm{V}\|^{2}\right)$		
Bin heap	$\mathrm{O}(\mathrm{VI})$	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\mathrm{E}\|\log \| \mathrm{V} \mid)$	$\begin{aligned} & \mathrm{O}((\|\mathrm{~V}\|+\|\mathrm{E}\|) \log \|\mathrm{V}\|) \\ & \mathrm{O}(\|\mathrm{E}\| \log \|\mathrm{V}\|) \end{aligned}$		
Fib heap	$\mathrm{O}(\mathrm{VV\mid})$	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\mathrm{EE} \mid)$	$\mathrm{O}(\|\mathrm{V}\| \log \|\mathrm{V}\|+\|\mathrm{E}\|)$		

50


52

## Is Dijkstra's algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from $s$ to $v$

> The only time a vertex gets visited is when the distance from $s$ to that vertex is smaller than the distance to any remaining vertex
> Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path
> We relied on having positive edge weights for correctness!

53

Bounding the distance
Another invariant: For each vertex $v, \operatorname{dist}[v]$ is an upper bound on   the actual shortest distance   a start off at $\infty$   a only update the value if we find a shorter distance
An update procedure
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$

55

## Bounding the distance

Another invariant: For each vertex $v$, dist[ $[v]$ is an upper bound on the actual shortest distance

Dijestra $(G, s)$
1 for all $v \in V$
$2 \operatorname{dist}[v] \leftarrow \infty$
$\begin{array}{ll}3 & \text { prev }[v] \leftarrow \text { null } \\ 4 & \text { dist }[s] \leftarrow 0\end{array}$
4 dist $[s] \leftarrow 0$
$5 \quad Q \leftarrow \operatorname{MakeHeap}(V)$
while ! $\operatorname{Empty}(Q)$
$u \leftarrow \operatorname{ExtractMin}(Q)$
for all edges $(u, v) \in E$
if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)$
DecreaseKey $(Q, v$, dist $[v])$
prev $|v| \leftarrow u$
Is this a valid invariant?
54

$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$   Can we ever go wrong applying this update rule?   $\square$   We can apply this rule as many times as we want and will   never underestimate dist $[v]$
When will dist $[v]$ be right?
$\square$ If $u$ is along the shortest path to $v$ and dist $[u]$ is correct

56


57

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

dist[v] will be right if $u$ is along the shortest path to $v$ and $\operatorname{dist}[u]$ is correct

What happens if we update all of the vertices with the above update?


59


58
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$
dist[v] will be right if $u$ is along the shortest path to $v$ and dist[u] is correct

What happens if we update all of the vertices with the above update?


60


61

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$

$\operatorname{dist}[v]$ will be right if $u$ is along the shortest path to $v$ and $\operatorname{dist}[u]$ is correct

How many times do we have to do this for vertex $p_{i}$ to have the correct shortest path from s?

- itimes


63


62


64


65

$$
\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}
$$



67


66


68


69


70


72


73


75


74


76


77


79


78


80


81


83


84


85


87


86


88


89


90

