SINGLE SOURCE SHORTEST PATHS	
David Kauchak CS 140 – Fall 2022	

Strongly connected Given a directed graph, can we reach any node v from any other node u?

Can we do the same thing?

5

Is Dijkstra's algorithm correct?

the actual shortest distance from s to v

vertex

42

Invariant: For every vertex removed from the heap, dist[v] is

The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining

 $\hfill\square$ Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

43

Running time?						
Depends on the heap implementation						
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total		
Array	O(V)	O(V ²)	O(E)	O(V ²)		
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)		

Running time?

 $\begin{array}{l} \mathsf{D}\mathsf{LIKSTRA}(G,s)\\ 1 \quad \text{for all } v \in V\\ 2 \qquad dist[v] \leftarrow \infty\\ 3 \quad prev[v] \leftarrow null\\ 4 \quad dist[s] \leftarrow 0\\ 5 \quad Q \leftarrow \mathsf{MAKEHEAP}(V)\\ \hline \mathbf{6} \quad \text{while !EAurry(Q)}\\ \hline \mathbf{7} \qquad u \leftarrow \mathsf{EXTRACTMIN}(Q)\\ \hline \mathbf{7} \qquad u \leftarrow \mathsf{EXTRACTMIN}(Q)\\ \hline \mathbf{7} \qquad u \leftarrow \mathsf{EXTRACTMIN}(Q)\\ \hline \mathbf{10} \quad \mathsf{if } dist[v] \vdash dist[u] + w(u,v)\\ \mathsf{if } dist[v] \vdash dist[u] + w(u,v)\\ \mathsf{D}\mathsf{LCREASE}(\mathsf{EV}(Q,v,dist[v]))\\ prev[v] \leftarrow u \end{array}$

|V| calls

47

48

Running time?						
Depends on the heap implementation						
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total		
Array	O(V)	O(V ²)	O(E)	O(V ²)		
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)		
Is this an improvement? If $ E < V ^2 / \log V $						
19						

Running time?							
Depends on the heap implementation							
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total			
Array	O(V)	O(V ²)	O(E)	O(V ²)			
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)			
Fib heap	O(V)	O(V log V)	O(E)	O(V log V + E)			
50							

We relied on having positive edge weights for correctness!

Bounding the distanceAnother invariant: For each vertex v, dist[v] is an upper bound on
the actual shortest distanceDIKKSTRA(G,s)1for all $v \in V$ 2dist[v] $\leftarrow \infty$ 3prev[v] $\leftarrow null$ 4dist[s] $\leftarrow 0$ 5Gor HAKEHEAP(V)6while !EMPTY(Q)7u \leftarrow EXTRACTMIN(Q)8for all edges (u, v) $\in E$ 9if dist[v] \leftarrow dist[v] \leftarrow dist[v] \leftarrow dist[v] (\leftarrow dist[v](v, v)10DECREASEKEV(Q, v, dist[v])12DECREASEKEV(Q, v, dist[v])12DECREASEKEV(Q, v, dist[v])13DECREASEKEV(Q, v, dist[v])14DECREASEKEV(Q, v, dist[v])15this a valid invariant?

54

Bounding the distance

Another invariant: For each vertex v, $\mathsf{dist}[v]$ is an upper bound on the actual shortest distance

 \blacksquare start off at ∞

only update the value if we find a shorter distance

An update procedure

$$dist[v] = \min\{dist[v], dist[u] + w(u, v)\}$$

dist[v] = min {dist[v], dist[u] + w(u, v)}
Can we ever go wrong applying this update rule?
 We can apply this rule as many times as we want and will
 never underestimate dist[v]
When will dist[v] be right?
 If u is along the shortest path to v and dist[u] is correct

55

Runtime of Bellman-Ford ELLMAN-FORD(G, s) 1 for all $v \in V$ 2 $dist[v] \leftarrow \infty$ 3 $prev[v] \leftarrow null$ 4 $dist[s] \leftarrow 0$ 5 for $i \leftarrow 1$ to |V| - 16 for all edges $(u, v) \in E$ if dist[v] > dist[u] + w(u, v) $dist[v] \leftarrow dist[u] + w(u, v)$ $prev[v] \leftarrow u$ $\sim E$ (-1 + w(u, v))

Can you modify the algorithm to run faster (in some circumstances)?

89

Single source shortest paths

All of the shortest path algorithms we've looked at today are call "single source shortest paths" algorithms

Why?