MORE GRAPHS

David Kauchak
CS 140 — Fall 2022

11/1/22

Admin
| |
Checkpoint

Assignment 7

Assignment 8

Heaps
[E
What's an abstract data type?

How can we implement a heap?
- Build-Heap
- Extract-Max

- Instert

Proofs on trees
[|

11/1/22

Hotels!

DAGs

Can represent dependency graphs

Topological sort

A linear ordering of all the vertices such that for all edges (u,v)
€ E, u appears before v in the ordering

An ordering of the nodes that “obeys” the dependencies, i.e.
an activity can’t happen until it's dependent activities have
happened

socks
underwear

Sl

watch
underwear

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

= o =

11/1/22

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

shoes

W= o =

underwear

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

shoes

W= o =

underwear

10

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

W= o =

underwear

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

W= o =

underwear

11

12

11/1/22

Topological sort
=

TOPOLOGICAL-SORT1(G)

1
2
3
4

Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

shoes

underwear
pants

Topological sort

TOPOLOGICAL-SORT1(G)

1
2
3
4

Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

shoes

underwear

13 14
Topological sort Topological sort

|] |
TOPOLOGICAL-SORT1(G) TOPOLOGICAL-SORT1(G)
1 Find a node v with no incoming edges 1 Find a node v with no incoming edges
2 Delete » from G 2 Delete v from G
3 Add v to linked list 3 Add v to linked list
4 TOPOLOGICAL-SORT1(G) 4 TOPOLOGICAL-SORT1(G)

15 16

11/1/22

Running time?

TOPOLOGICAL-SORT1(G)

W= o =

Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

Running time?
[

TOPOLOGICAL-SORT1(G)

‘1 Find a node v with no incoming edges ‘ O(IVI+E)
2 Delete v from G

Add v to linked list

TOPOLOGICAL-SORT1(G)

W= Lo

17

18

Running time?

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges

Delete » from G

W= L (=

Add v to linked list
TOPOLOGICAL-SORT1(G)

O(E) overall

Running time?
[

TOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges

2 Delete v from G

3 Add v to linked list

4 ToOPOLOGICAL-SORT1(G) ‘

How many calls? V]|

19

20

11/1/22

Running time?

TOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges
2 Delete » from G

3 Add v to linked list

4 TOPOLOGICAL-SORT1(G)

Overall running time?

O(IVIP+IVI [E)

Can we do better?
[

TOPOLOGICAL-SORT1(G)

‘1 Find a node v with no incoming edges
2 Delete v from G

3 Add v to linked list

4 ToPOLOGICAL-SORT1(G)

21

22

Topological sort 2 Topological sort 2
|] |
TOPOLOGICAL-SORT2(G) TOPOLOGICAL-SORT2(G)
1 for all edges (u,v) € E 1 for all edges (u,v) € E
2 active[v] «— active[v] + 1 2 active[v] — active[v] + 1
3 forallveV 3 forallveV
4 if active[v] =0 4 if active[v] =0
5 ENQUEUE(S,v) 5 ENQUEUE(S,v)
6 while !EMPTY(S) 6 while 'EmpPTY(S)
7 u «— DEQUEUE(S) 7 u «— DEQUEUE(S)
8 add u to linked list 8 add u to linked list
9 for each edge (u,v) € E 9 for each edge (u.,v) € £
10 active[v] — active[v] — 1 10 active[v] — active[v] — 1
11 if active[v] =0 11 if active[v] =0
12 ENQUEUE(S,v) 12 ENQUEUE(S,v)
23 24

11/1/22

Topological sort 2 Topological sort 2
|] |
TOPOLOGICAL-SORT2(G) TOPOLOGICAL-SORT2(G)
1 for all edges (u,v) € E 1 for all edges (u,v) € E
2 active[v] — active[v] + 1 2 active[v] — active[v] + 1
3 forallveV 3 forallveV
4 if active[v] =0 4 if active[v] =0
5 ENQUEUE(S,v) 5 ENQUEUE(S,v)
6 while 'EMPTY(S) 6 while !EMPTY(S)
7 u +— DEQUEUE(S) 7 u «— DEQUEUE(S)
8 add u to linked list 8 add u to linked list
9 for each edge (u,v) € F 9 for each edge (u.,v) € £
10 active[v] «— active[v] — 1 10 active[v] «— active[v] — 1
11 if active[v] =0 11 if active[v] =0
12 ENQUEUE(S, v) 12 ENQUEUE(S,v)
25 26

Running time?

How many times do we process each node?

How many times do we process each edge?

oIVl + [El)

TOPOLOGICAL-SORT2(G)

1 for all edges (u,v) € E

2 active[v] — active[v] + 1

3 forallveV

4 if active[v] =0

5 ENQUEUE(S,v)

6 while !EmMpTY(S)

7 u «— DEQUEUE(S)

8 add u to linked list

9 for each edge (u,v) €

10 active[v] — active[v] — 1
11 if active[v] =0

12 ENQUEUE(S,v)

Detecting cycles

Undirected graph
BFS or DFS. If we reach a node we've seen already, then we've found a
cycle

Directed graph
Call TopologicalSort
If the length of the list returned # | V| then a cycle exists

27

28

11/1/22

Connectedness
[

Given an undirected graph, for every node u € V,
can we reach all other nodes in the graph?
Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark
nodes as we visit them. If we visit all nodes,
return true, otherwise false.

Running time: ~ O(|V| + |E])

Strongly connected
o

Given a directed graph, can we reach any node v
from any other node u?

Can we do the same thing?

29

30

Transpose of a graph Strongly connected
[==
Given a graph G, we can calculate the transpose of a
graph GR by reversing the direction of all the edges
GR
G Strongly-Connected(G)
- Run DFS-Visit or BFS from some node u
/ - If not all nodes are visited: return false
. - Create graph GR
.‘\ - Run DFS-Visit or BFS on G* from node u
. - If not all nodes are visited: return false
- return true
Running time to calculate GR? 6(|V| + |E|)
31 32

11/1/22

Is it correct? Runtime?
| |
What do we know after the first pass? s oG d(G)
Starting at u, we can reach every node trongly-Connecte
- Run DFS-Visit or BFS from some node v O(IV| + [El)
o - If not all nodes are visited: return false ~ O(IVI)
thtAclnllo \;«e know cn:er I/P:/t; seecond pass? - Create graph G o(V] + |E])
nodes can reach u. y¢ - Vit R
We can get from u to every node in GF, therefore, if we reverse the Run DFS-Visit or BFS on GF from node u O(VI +[El)
edges (i.e. G), then we have a path from every node to u - If not all nodes are visited: return false O(|V])
- return true
Which means that any node can reach any other node. Given
any two nodes s and t we can create a path through u
O(lV| + |E])
33 34
Shortest paths
|
Dijkstra’s
Bellman-Ford
Floyd-Warshall
Johnson’s
35

