

1

Checkpoint 2

2 pages of notes

From hashtables (9/2) through dynamic programming (10/13)

Practice problems available in group assignment 7

3

Admin

Assignment 7

Learning communities: may attend any group going forward

Grading update

$\square 5$ graded

- 4.1 soon!
\square Checkpoint revisions graded

2

A problem

Input: a number k

Output: $\left\{n_{p}, n_{n}, n_{d}, n_{q}\right\}$, where $n_{p}+5 n_{n}+10 n_{d}+25 n_{q}=k$ and $n_{p}+n_{n}+n_{d}+n_{q}$ is minimized

What is this problem?
How would you state it in English?

4

5

Making change!

Input: a number k

Output: $\left\{n_{p}, n_{n}, n_{d}, n_{q}\right\}$, where $n_{p}+5 n_{n}+10 n_{d}+25 n_{q}=k$ and $n_{p}+n_{n}+n_{d}+n_{q}$ is minimized
$n_{q}=\lfloor k / 25\rfloor \quad$ pick as many quarters as we can
Solve:
$n_{p}+5 n n+10 n d=\mathrm{k}-25\lfloor k / 25\rfloor \quad$ recurse

7

Making change!

Input: a number k

Output: $\left\{n_{p}, n_{n}, n_{d}, n_{q}\right\}$, where $n_{p}+5 n_{n}+10 n_{d}+25 n_{q}=k$ and $n_{p}+n_{n}+n_{d}+n_{q}$ is minimized

> Algorithm to solve it?

6

Algorithms vs heuristics

What is the difference between an algorithm and a heuristic?

Algorithm: a set of steps for arriving at the correct solution

Heuristic: a set of steps that will arrive at some solution

8

9

11

Greedy algorithms

What is a greedy algorithm?

Algorithm that makes a local decision with the goal of creating a globally optimal solution

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to sub-problems

What does this mean? Where have we seen this before?

10

12

13

15

14

16

17

Optimal substructure

Proof by contradiction:
Assume $\left\{c_{1}, c_{2}, c_{3}, \ldots, c m\right\}$ is optimal for k, but $\left\{c_{2}, c_{3}, \ldots, c m\right\}$ is not optimal for $k-c_{1}$

What does that imply?

18

20

Optimal substructure
Proof by contradiction:
Assume $\left\{c_{1}, c_{2}, c_{3}, \ldots, c m\right\}$ is optimal for k,
but $\left\{c_{2}, c_{3}, \ldots, c m\right\}$ is not optimal for k - c_{1}
There is some other set of coins
$\left\{c^{\prime} 2, c^{\prime} 3, \ldots, c_{n}^{\prime}\right\}$ where $\mathrm{n}<\mathrm{m}$ that add up to k -
c_{1}
$\left\{c_{1}, c^{\prime} 2, c^{\prime} 3, \ldots, c^{\prime}\right\}$ would be a solution, but since
$\mathrm{n}<\mathrm{m}$ this mplies that our original solution wasn't optimal!

21

Greedy choice property
Greedy choice property: The greedy choice
is contained within some optimal solution
The greedy choice results in an optimal solution

23

22

Greedy choice property
Proof by contradiction:
Let $\left\{c_{1}, c_{2}, c_{3}, \ldots, c m\right\}$ be an optimal solution
Assume it is ordered from largest to smallest
Assume that it does not make the greedy choice at
some coin c_{i}
$g_{i}>c_{i}$. We need at least one more lower denomination
coin because g_{i} can be made up of c_{i} and one or more of
the other denominations
but that would mean that the solution is longer than the
greedy!

25

Interval scheduling

Given n activities $A=\left[a_{1}, a_{2}, . ., a_{n}\right]$ where each activity has start time s_{i} and a finish time f_{i}. Schedule as many as possible of these activities such that they don't conflict.
\qquad
\qquad
Which activities conflict?

Interval scheduling

Given n activities $A=\left[a_{1}, a_{2}, . . a_{n}\right]$ where each activity has start time s_{i} and a finish time f_{i}. Schedule as many as possible of these activities such that they don't conflict.

26

Interval scheduling

Given n activities $A=\left[a_{1}, a_{2}, . . a_{n}\right]$ where each activity has start time s_{i} and a finish time f_{i}. Schedule as many as possible of these activities such that they don't conflict.

Which activities conflict?

28

29

31

Simple recursive solution

> Is it correct?
> max\{all possible solutions $\}$

Running time?

- $O(n!)$

IntervalSchedule-Recursive (A)
1 if $A=\{ \}$
else return 0
$\max =-\infty$
for all $a \in A$
$A^{\prime} \leftarrow A$ minus a and all conflicting activites with a $s=$ IntervalSchedule-Recursive $\left(A^{\prime}\right)$
if $s>\max$
return $1+$ max
30
Overview of a greedy approach
Greedily pick an activity to schedule
Add that activity to the answer
Remove that activity and all conflicting activities. Call this A' .
Repeat on A' until A' is empty

32

33

Greedy options

Select the shortest activity, i.e. $\operatorname{argmin}\left\{f_{1}-s_{1}, f_{2}-s_{2}, f_{3}-s_{3}, \ldots, f_{n}-s_{n}\right\}$
\qquad
$\stackrel{ }{\square}$

35

Greedy options

Select the activity that starts the earliest, i.e. $\operatorname{argmin}\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$?
\qquad
non-optimal

34

36

37

39

38

40

41

43

42

44

45

47

Greedy options

Select the activity that ends the earliest, i.e. $\operatorname{argmin}\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n}\right\}$?
\qquad

46

48

49

51

Greedy options

Select the activity that ends the earliest, i.e. $\operatorname{argmin}\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n}\right\}$?
\qquad
\qquad

50

52

Is our greedy approach correct?
"Stays ahead" argument:
show that no matter what other solution someone provides you, the solution provided by your algorithm always "stays ahead", in that no other choice could do better

55

Is our greedy approach correct?
"Stays ahead" argument

Let $r_{1}, r_{2}, r_{3}, \ldots, r_{k}$ be the solution found by our approach

Let $o_{1}, o_{2}, o_{3}, \ldots, o_{k}$ be another optimal solution

Show our approach "stays ahead" of any other solution

54

56

57

59

58

60

61

63

62

64

65

67

66

68

69

Runtime?	
$O(2 n \log 2 n+n)=O(n \log n)$	
AllintervalScheduleCount(A) Sort the start and end times, call this X current $\leftarrow 0$ $\max \leftarrow 0$ for $i \leftarrow 1$ to length $[X]$ if x_{i} is a start node current + + else current - - if current $>$ max return max max \leftarrow current	

70

Knapsack problems:

Greedy or not?

0-1 Knapsack - A thief robbing a store finds n items worth v_{1}, v_{2}, \ldots, v_{n} dollars and weight $w_{1}, w_{2}, \ldots, w_{n}$ pounds, where v_{i} and w_{i} are integers. The thief can carry at most W pounds in the knapsack. Which items should the thief take if he wants to maximize value.

Fractional knapsack problem - Same as above, but the thief happens to be at the bulk section of the store and can carry fractional portions of the items. For example, the thief could take 20% of item i for a weight of $0.2 w_{i}$ and a value of $0.2 v_{i}$.

71

