
10/20/22

1

GREEDY ALGORITHMS
David Kauchak
CS 140 – Fall 2022

1

Admin

Assignment 7

Learning communities: may attend any group going
forward

Grading update
¤ 5 graded
¤ 4.1 soon!
¤ Checkpoint revisions graded

2

Checkpoint 2

2 pages of notes

From hashtables (9/2) through dynamic programming
(10/13)

Practice problems available in group assignment 7

3

A problem

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

What is this problem?
How would you state it in English?

4

10/20/22

2

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

Provide (U.S.) coins that sum up to k such
that we minimize the number of coins

5

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

Algorithm to solve it?

6

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

𝑛𝑞 = 𝑘 / 25 pick as many quarters as we can

Solve:
𝑛𝑝 + 5𝑛𝑛 + 10𝑛𝑑 = k − 25 𝑘 / 25 recurse

7

Algorithms vs heuristics

What is the difference between an algorithm and a
heuristic?

Algorithm: a set of steps for arriving at the correct
solution

Heuristic: a set of steps that will arrive at some
solution

8

10/20/22

3

Making change!

Algorithm or heuristic?

Need to prove its correct!

𝑛𝑞 = 𝑘 / 25 pick as many quarters as we can

Solve:
𝑛𝑝 + 5𝑛𝑛 + 10𝑛𝑑 = k − 25 𝑘 / 25 recurse

9

Greedy algorithms

What is a greedy algorithm?

Algorithm that makes a local decision with the goal of creating a
globally optimal solution

Method for solving problems where optimal solutions can be
defined in terms of optimal solutions to sub-problems

What does this mean? Where have we seen this before?

10

Greedy vs. divide and conquer

Divide and conquer

To solve the general problem:

Break into sum number of sub problems, solve:

then possibly do a little work

11

Divide and conquer

Divide and conquer

To solve the general problem:

The solution to the general problem is solved with
respect to solutions to sub-problems!

12

10/20/22

4

Dynamic programming

Dynamic programming
To solve the general problem:

The solution to the general problem is solved with
respect to solutions to sub-problems that overlap!

…

13

Greedy vs. divide and conquer

Greedy

To solve the general problem:

Pick a locally optimal solution and repeat

14

Greedy vs. divide and conquer

Greedy

To solve the general problem:

The solution to the general problem is solved with respect to
solutions to sub-problems!

Slightly different than divide and conquer

15

Proving greedy algorithms correct

One approach, prove:

1) Optimal substructure: The optimal solution contains
within it the optimal solution to subproblems

2) Greedy choice property: The greedy choice is
contained within some optimal solution

16

10/20/22

5

Making change!

{𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚} solution: individual coins selected

𝑛𝑞 = 𝑘 / 25 pick as many quarters as we can

Solve:
𝑛𝑝 + 5𝑛𝑛 + 10𝑛𝑑 = k − 25 𝑘 / 25 recurse

17

Optimal substructure

If 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k, then
𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k-𝑐1

We can combine a greedy choice with the
optimal solution for the remaining problem
and get a solution to the general problem

18

Optimal substructure

Assume 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k,
but 𝑐2, 𝑐3, … , 𝑐𝑚 is not optimal for k-𝑐1

Proof by contradiction:

What does that imply?

19

Optimal substructure

Assume 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k,
but 𝑐2, 𝑐3, … , 𝑐𝑚 is not optimal for k-𝑐1

Proof by contradiction:

There is some other set of coins
𝑐′2, 𝑐′3, … , 𝑐′𝑛 where n < m that add up to k-
𝑐1

Any problem contradiction?

20

10/20/22

6

Assume 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k,
but 𝑐2, 𝑐3, … , 𝑐𝑚 is not optimal for k-𝑐1

Proof by contradiction:

There is some other set of coins
𝑐′2, 𝑐′3, … , 𝑐′𝑛 where n < m that add up to k-
𝑐1
𝑐1, 𝑐′2, 𝑐′3,… , 𝑐′𝑛 would be a solution, but since

n < m this implies that our original solution wasn’t optimal!

Optimal substructure

21

Optimal substructure

If 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for

𝑐2, 𝑐3, … , 𝑐𝑚 is optimal for k-𝑐1

We can make greedy decisions

22

Greedy choice property

The greedy choice results in an optimal solution

Greedy choice property: The greedy choice
is contained within some optimal solution

23

Greedy choice property

Proof by contradiction:

Let {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚} be an optimal solution

Assume it is ordered from largest to smallest

Assume that it does not make the greedy
choice at some coin 𝑐𝑖

Any problem contradiction?

24

10/20/22

7

Greedy choice property

Proof by contradiction:
Let {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚} be an optimal solution
Assume it is ordered from largest to smallest

Assume that it does not make the greedy choice at
some coin 𝑐𝑖

gi > ci. We need at least one more lower denomination
coin because gi can be made up of ci and one or more of
the other denominations

but that would mean that the solution is longer than the
greedy!

25

Interval scheduling

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

26

Interval scheduling

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

Which activities conflict?

27

Interval scheduling

Which activities conflict?

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

28

10/20/22

8

Simple recursive solution

Enumerate all possible solutions and find which
schedules the most activities

29

Simple recursive solution

Is it correct?
l max{all possible solutions}

Running time?
l O(n!)

30

Can we do better?

Dynamic programming
¤ O(n2)

Greedy solution – Is there a way to repeatedly make local
decisions?

¤ Key: we’d still like to end up with the optimal solution

31

Overview of a greedy approach

Greedily pick an activity to schedule

Add that activity to the answer

Remove that activity and all conflicting activities. Call this A’.

Repeat on A’ until A’ is empty

32

10/20/22

9

Greedy options

Select the activity that starts the earliest, i.e.
argmin{s1, s2, s3, …, sn}?

33

Greedy options

non-optimal

Select the activity that starts the earliest, i.e.
argmin{s1, s2, s3, …, sn}?

34

Greedy options

Select the shortest activity, i.e.
argmin{f1-s1, f2-s2, f3-s3, …, fn-sn}

35

Greedy options

Select the shortest activity, i.e.
argmin{f1-s1, f2-s2, f3-s3, …, fn-sn}

non-optimal

36

10/20/22

10

Greedy options

Select the activity with the smallest number of conflicts

37

Greedy options

Select the activity with the smallest number of conflicts

38

Greedy options

Select the activity with the smallest number of conflicts

39

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

40

10/20/22

11

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

remove the conflicts

41

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

42

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

43

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

remove the conflicts

44

10/20/22

12

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

45

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

46

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

47

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

48

10/20/22

13

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Multiple optimal
solutions

49

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

50

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

51

Efficient greedy algorithm

Once you’ve identified a reasonable greedy heuristic:
¤ Prove that it always gives the correct answer
¤ Develop an efficient solution

52

10/20/22

14

Is our greedy approach correct?

“Stays ahead” argument:

show that no matter what other solution someone
provides you, the solution provided by your
algorithm always “stays ahead”, in that no other
choice could do better

53

Is our greedy approach correct?

“Stays ahead” argument

Let r1, r2, r3, …, rk be the solution found by our approach

Let o1, o2, o3, …, ok be another optimal solution

Show our approach “stays ahead” of any other solution

…
r1 r2 r3 rk

o1 o2 o3 ok
…

54

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

Compare first activities of each solution

what do we know?

55

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

finish(r1) ≤ finish(o1)

what does this imply?

56

10/20/22

15

Stays ahead

…
r2 r3 rk

o2 o3 ok
…

We have at least as much time
as any other solution to schedule
the remaining 2…k tasks

57

An efficient solution

58

Running time?

Θ(n log n)

Θ(n)

Overall: Θ(n log n)
Better than:

O(n!)
O(n2)

59

Scheduling all intervals

Given n activities, we need to schedule all activities.
Goal: minimize the number of resources required.

60

10/20/22

16

Greedy approach?

The best we could ever do is the maximum
number of conflicts for any time period

61

Calculating max conflicts efficiently

62

Calculating max conflicts efficiently

3

63

Calculating max conflicts efficiently

1

64

10/20/22

17

Calculating max conflicts efficiently

3

65

Calculating max conflicts efficiently

1

66

Calculating max conflicts efficiently

…

67

Calculating max conflicts

68

10/20/22

18

Correctness?

We can do no better then the max number of conflicts.
This exactly counts the max number of conflicts.

69

Runtime?

O(2n log 2n + n) = O(n log n)

70

Knapsack problems:
Greedy or not?

0-1 Knapsack – A thief robbing a store finds n items worth v1,
v2, .., vn dollars and weight w1, w2, …, wn pounds, where vi and
wi are integers. The thief can carry at most W pounds in the
knapsack. Which items should the thief take if he wants to
maximize value.

Fractional knapsack problem – Same as above, but the thief
happens to be at the bulk section of the store and can carry
fractional portions of the items. For example, the thief could
take 20% of item i for a weight of 0.2wi and a value of 0.2vi.

71

