10/13/22

Admin

[
Assignment 6

DYNAMIC PROGRAMMING:
EVEN MORE FUN!

David Kauchak
CS 140 — Fall 2022

1 2
Mentor hours this week LC meetings
| | | IS |
Thursday: 6-8pm (Aidan) Thursday:
Friday: 1-3pm (Emily) 1 8-9pm (Emily—Edmunds upstairs, Carl—Edmunds upstairs)
Saturday: 9:30-11:30am (Millie) Friday:
Sunday: 7-9pm (Carl), 8-10pm (Alan) 1 9-10am (Millie—Edmunds downstairs)
! 1 2-3pm (Jichao—Edmunds downstairs, Aidan)
0 3-4pm(Jichao—Edmunds downstairs)
0 4-5pm (Millie)
3 4

10/13/22

Longest increasing subsequence
[

Given a sequence of numbers X = x;, X2, ..., X, find
the longest increasing subsequence

(i1, i2, +++, im), that is a subsequence where numbers in
the sequence increase.

52863697

Longest increasing subsequence
[

Given a sequence of numbers X = x;, X2, ..., X, find
the longest increasing subsequence

(i1, i2, +++, im), that is a subsequence where numbers in
the sequence increase.

52863697

5 6
1 a: optimal substructure 1 a: optimal substructure
| |
Prove: optimal solutions to the problem incorporate Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems optimal solutions to related subproblems
52863697 52863697
{iy, i o) im} {i, i) o) Im}
What would a solution to a subproblem {i2, . lm} for the sequence
look like? . . .
starting at index i,
7 8

10/13/22

1 a: optimal substructure 1b: recursive solution
| |
Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems ? 2863697
Proof by contradiction:
Assume: {i1, i3, i3, ..., Im} is a solution to X1 ... X, but Is 5 part off the LIS?
{i2, i3, ..., im} is not a solution fo X;, ... Xn
Then some solution to X;, ... Xm exists, {i'5,1'3, ..., ik} where k>
m.
We could create a solution {iy,i'5,i'3, ..., i"x} to the original
problem that is a better solution ... contradiction
9 10
1b: recursive solution 1b: recursive solution
| |
52863697 52863697
I include 5 I
Two options:
Either 5 is in the S+LISB 6 3697)
LIS orit’s not
11

12

10/13/22

1b: recursive solution

52863697
include 5 |

5+LIS(8 6 369 7)
-

What is this function exactly?

~

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

1b: recursive solution
=
52863697

include 5 |
5+LIS86 3697)
Y}

What is this function exactly?
longestincreasing This would allow for the option of
sequencef the sequences starting with 3 which
numbers are NOT valid!

13 14
1b: recursive solution 1b: recursive solution

| |

52863697 52863697
include 5 I include 5 I

5+LIS (86 369 7) 5+LIS(8 6 369 7)
| _Y_, . 5+LIS(6 36 97)
ongest increasing sequence of
the numbers starting with 8 5+ LIS'(6 9 7)
Do we need to consider anything 5+ L|S’(9 7)
else for subsequences starting at 5?
Ise f bseq tarting at 5 5+L|S’(7)

15 16

10/13/22

1b: recursive solution 1b: recursive solution
[[
52863697 LIS(X) = max{LIS' (i)}
don't i
include 5 Longest increasing sequence for X
L|S(2 86 369 7) is the longest increasing sequence
starting at any element
Anything else?
Technically, this is fine, but now we have And what is LIS’ defined as (recursively)?
LIS and LIS’ to worry about.
Can we rewrite LIS in terms of LIS’?
17 18
1b: recursive solution 2: DP solution (bottom-up)
[[
— Lrea LI e - 1 1
LIS(X) = max{LIS" (i)} S0 + ey MK x].m.LIS ()]
Longest increasing sequence for X
is the longest increasing sequence LIS :
starting at any element 52863697
reiy ' I
LIS'D) = 1+ j:i<jsrrln¢ian)§i x>, LIS'G)
Longest increasing sequence starting at i
19 20

10/13/22

2: DP solution (bottom-up) 2: DP solution (bottom-up)
= [
LIs'@) = 1+ Ji<jzn g xj>xi LIS'G) LIs'(@) = 1+ j:i<jsrr1111?1)c(ixj>xiLIS,(j)
LIS™: 1 LIS™: 1
52863697 52863697
T T
21 22

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIS'(@) = 1+ j:i<jsr?}31)((1xj>xi LIS'() LIs'(@) = 1+ j:i<jsrr11}12111)¢(ixj>xiLISI(j)
LIS’ : 11 LIS™: 11
52863697 52863697
T T
23 24

10/13/22

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() = 1+j:i<jsrlzr}33éxj>xiusl(j) LIs'(1) = 1+j:i<jsr?}1?1)éxj>xiLIS,(j)
LIS’ : 2 1 1 LIS’ 3211
52863697 52863697
T T
25 26

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() =1 +j:i<jsr?}12711)((1xj>xi LIS'() Lis'w) =1 +j:i<jsrrlr}12111)¢(ixj>xiLISI(j)
LIS : 23211 LIS’ 223211
52863697 52863697
T :
27 28

10/13/22

2: DP solution (bottom-up) 2: DP solution (bottom-up)
fr [
LIs'() = 1+j:i<jsrlzr}33éxj>xiusl(j) LIs'(1) = 1+j:i<jsr?}1?1)éxj>xiLIS,(j)
LIS: 4 2232 11 LIS: 3 4 2 2 3 2 1 1
52863697 52863697
T T
29 30

2: DP solution (bottom-up) 2: DP solution (bottom-up)
|] |
LIs'(@) = 1+ j:i<j51?333é xj>xi LIS'G) LIs'(@) = 1+ j:i<j51r11}15111)¢(1 xj>xiLIS o
LIS: 3/4(2 2 3 2 1 1
52863697 What does the data structure for
storing answers look like?
LIS(X)=max{LIS'(i)}
31 32

10/13/22

2: DP solution (bottom-up) 2: DP solution (bottom-up)
[|
LIS'(Q) =1+ max LIS'(j LIS'(Q)) = 1+ max LIS'(j
() Jjii<jsn and xj>xi (]) () Jii<jsn and xj>xi ('l)
\ What are the “smallest” possible subproblems?
1-D array: only one thing changes To calculate LIS’(n), what are all the subproblems we
for recursive calls need to calculate? This is the “table”.
How should we fill in the table?
Where will the answer be?
33 34
2: DP solution (bottom-up) 2: DP solution (bottom-up)
[|
LIS'()) =1+ max LIS'(j
() jii<jsnand xj>xi (J) LIS(X)
1 n+« LENGTH(X)
What are the “smallest” possible subproblems? 2 create array lis with n entries
LIS’(n) and that is well-defined for this problem j for i —n to .1 .
5 for’j»1+1t0n
To calculate LIS'(i), what are all the subproblems we need to calculate? 6 if X[j] > X[i]
This is the “table”. 7 if 1+ lis[j] > max
LIS (1) ... LIS'(n) 8 max — 1+ lis[j]
9 lis[i] < max
10 mazx — 0
How should we fill in the table? 11 fori—lton
n>1 12 if lis[i] > max
13 max — lis[i]
Where will the answer be? 14 return maz
max(LIS'(1)...LIS'(n))
35 36

10/13/22

2: DP solution (bottom-up)

LIS(X)
1 n+« LENGTH(X)

2 create array l7s with n entries

3 fori—mntol ‘

4 mazr — 1

5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > max
8 max — 1+ lis[j]
9 lisli] < max

10 max 0

11 fori—1lton

12 if lisfi] > max

13 max — lisli]

14 return max

start from the end (bottom)

2: DP solution (bottom-up)

LIS(X)

! n e LENGTH(X) _ US'@ =1+ _ max _ LIS()
2 create array lis with n entries Ji<jsnand xj>xi
3 fori—mntol

4 max — 1

5 for j—i+1ton

6 it X[j] > X[i]

7 if 1+ lis[j] > max

8 max — 14 lis[j]

9 lis[i] < max

10 max 0

11 fori—1lton

12 if lis[i] > max

13 mazx — lisli]

14 return maxr

37

38

2: DP solution (bottom-up)

LIS(X)
1 n+« LENGTH(X)

2 create array lis with n entries

3 fori—mntol

4 mazx — 1

5 for j—i+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > max

8 max — 1+ lis[j]

9 lisli] — max

10 maz — 0

L fori—1ton LIS(X) = max{LIS'(i)}
12 if lis[i] > max i
13 max — lis]i]

14 return max

3: Analysis

LIS(X)

1 ne— LENGTH(X) Space requirements?
2 create array lis with n entries

3 fori—mntol

4 maz — 1 Running time?
5 for j—i1+1ton

6 if X[j] > X[i]

7 if 1+ lis[j] > max

8 mazx — 1+ lis[j]

9 lis[i] « mazx

10 max — 0

11 fori—1lton

12 if lis[i] > max

13 max « lisli]

14 return max

39

40

10

10/13/22

3: Analysis Another solution
[|
LIS(X) Can we use LCS to solve this problem?
1 n— LENGTH(X) Space requirements: O(n)
2 create array lis with n entries
3 fori—mntol 5 2 8 6 3 6 9 7
4 ;f;;x—l Running time: O(n?) LCS
5 j—i+1lton
6 if X[j] > X[i]
7 if 14 lis[j] > max 2 3 5 6 6 7 8 9
8 max — 1+ lis[j]
9 lisli] — max
10 max — 0
11 fori—1lton
12 if lis[i] > max
13 max — lis|i]
14 return max
41 42

Another solution

Can we use LCS to solve this problem?

52863697
LCS

23566789

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum number

of insertions, deletions and substitutions required to
transform string s into string s»

ABACED [EX) ABACCED [EE) DABACCED

43

44

11

10/13/22

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s; into string s2

ABACED

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s into string s2

BACED EE) BACED

45

46

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum number

of insertions, deletions and substitutions required to
transform string s; into string s2

ABACED [E=) BACE

=) BACE

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum number

of insertions, deletions and substitutions required to
transform string s into string s»

=) ABADE

ABACED [EE) ABADED

47

48

12

10/13/22

Edit distance examples Edit distance examples
|] |
Edit(Kitten, Mitten) = 1 Edit(Happy, Hilly) = 3
Operations: Operations:
Sub ‘M’ for ‘K’ Mitten Sub ‘a’ for i’ Hippy
Sub ‘1" for ‘p’ Hilpy
Sub ‘I for ‘p’ Hilly
49 50
Edit distance examples Edit distance examples
|] |
Edit(Banana, Car)= 5 Edit(Simple, Apple) = 3
Operations: Operations:
Delete ‘B’ anana Delete ‘S’ imple
Delete ‘a’ nana Sub ‘A’ for i’ Ample
Delete ‘n’ naa Sub ‘m’ for ‘p’ Apple
Sub ‘C’ for ‘n” Caa
Sub ‘a’ for ' Car
51 52

13

10/13/22

Edit distance Is edit distance symmetric?
|] |
that is, is Edit(s, s2) = Edit(sz, $1)?
Edit(Simple, Apple) =? Edit(Apple, Simple)
Why might this be useful?
Why?
sub i for § —sub j for ¥’
delete i’ —insert ‘i’
insert i’ — delete ‘i’
53 54

Calculating edit distance Calculating edit distance
fr [
X=ABCBDAB X=ABCBDA?
Y=BDCABA Y=BDCAB?
Ideas? How can we break
this into subproblems?
55 56

14

10/13/22

Calculating edit distance Insert
| |
X=ABCBDA? X=ABCBDA?
Y=BDCAB? Y=BDCAB(?)
Operations: Insert i)
Delete :Zs;r:;:h:: rr:a(lj(:f::gthe same? How can we use insert to transform X into Y2
Substitute '
57 58
Insert Insert
| |
X=ABCBDA?? X=ABCBDA??
Y=BDCAB?) Y=BDCAB?)
insert the last character of Y to the end of X How does this make the problem smaller?
59 60

15

10/13/22

Insert Delete
| |
X=ABCBDA?? X=ABCBDA®?
Edit
Y=BDCAB|? Y=BDCAB?
Edil‘(X, Y) 14 Edl't(len, Ylu_m,l) How can we use delete to transform X into Y?2
61 62
Delete Substition
| |
X=ABCBDA]? X=ABCBDA?
Edit l
Y=BDCAB ?| Y=BDCAB?
Edit(X, Y) 14+ Edl.t(le,,,l , Ylm) How can we use substitution to transform X into Y2
63 64

16

10/13/22

Substition Anything else?
[==
X=ABCBDA]? X=ABCBDA?
Edit
Y=BDCAB? Y=BDCAB?
Edlt(X’ Y) = 1 + Edit(Xl...n—l ’ Yl...m—l)
65 66
Equal Equal
[==
X=ABCBDA? X=ABCBDA?
Edit
Y=BDCAB? Y=BDCAB?
What if the last characters are equal? Edlt(X,Y) _ Edit(le,,,l ,Ylmm,l)
67 68

17

10/13/22

1b: recursive solution - combining results 1b: recursive solution - combining results
[|
Insert: Edit(X,Y) =1+ Edit(X, .Y,)
Delete: Edit(X,Y)=1+Edit(X, .Y)
1+ Edit(X, .Y,) insertion
Xn # Ym Edit(X,Y) = min 1+ Edit(X, .Y,) deletion
Substitute: Edlt(X, Y) =1+ Edlt(Xl el)/1 m—l) Diff (x,,y,)+Edit(X, .Y, ,) equal/substitution
Xn=Yn . A 1: if they're different
Equal: Edlt(X, Y) = Edlt(len_l , Y;...m—l) 0: if they’re the same
How do we decide between these?
69 70

2: DP solution (bottom-up) 2: DP solution (bottom-up)
[|
1+ Edit(X, .Y, ,..) insertion 1+ Edit(X, .Y,) insertion
Edit(X,Y)=min 1+ Edit(X, .Y,) deletion Edit(X,Y)=min 1+ Edit(X, .Y,) deletion
Diff (x,,y,)+ Edit(X, .Y,) equal/substitution Diff (x,,y,)+ Edit(X, , .Y, ,;) equal/substitution
What does the data structure for Edit(X1..511..5)
storing answers look like?
d[i, j]: edit distance between X; ; and Yi.j
71 72

18

10/13/22

2: DP solution (bottom-up)

L+ Edit(X, %, ,)
1+ Edit(X, 15,)
Diff (x,,y,)+Edit(X, .Y, ,.) equal/substitution

insertion

Edit(X,Y)=min deletion

What are the “smallest” possible subproblems?

To calculate d(n, m), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

2: DP solution (bottom-up)

1+ EditX, .Y,) insertion
I+ Edit(X, 15 Y0)

Diff (x,,y,)+Edit(X, .Y, ,.) equal/substitution

Edit(X,Y)=min deletion

What are the “smallest” possible subproblems?

Edit(X, “”) = len(X) and Edit(*”, Y) = len(Y)

To calculate d(n, m), what are all the subproblems we need to calculate? This is
the “table”.

i<nandj<m

How should we fill in the table?
i=1., j=1.

Where will the answer be?

Where will the answer be? dlnm]
. N
2: DP solution (bottom-up) 3: analysis
[|
1+ Edit(X, .Y, 1) insertion 1+ Edit(X, .Y,) insertion
Edit(X,Y) = min 1+ Edit(X, .. Y,..,) deletion Edit(X,Y) = min 1+ Edit(X, .Y,) deletion
Diff (x,,y,)+ Edit(X, .Y,) equal/substitution Diff (x,,y,)+ Edit(X, , .Y, ,,) equal/substitution
Epir(X.Y) Epit(X.Y)
1 m « length[X] 1 m « length[X] .
2 n«— length[Y] 2 n«— length|Y] Spuce reqUIremenTs?
3 fori—0tom 3 fori—0Otom
1 d[i,0] — i 4 d[i,0] — i
5 forj— 0ton 5 forj—0ton Running time?
6 d[0,j] < j 6 d[0,j] —j
7 fori—1ltom 7 fori—1ltom
8 for j— 1ton 8 for j— 1ton
9 dli,j] = min(1+d[i — 1, 5], 9 d[i,j] = min(1+d[i — 1, j],
1+4dfi.j—1]. 1+4dfi,j—1].
DIFF (24,45) +d[i — 1,5 — 1]) DIFF(xi, 4;) +d[i — 1,5 — 1])
10 return d[m,n] 10 return dfm,n]

19

10/13/22

3: analysis Edit distance variants
|] |
1+ Edit(X, %,) insertion o Only include insertions and deletions
Edit(X,Y)=min 1+ Edit(X, .Y,) deletion What does this do to substitutions?
Diff (x,,y,)+Edit(X, ,_.Y, ,.,) equal/substitution
o Include swaps, i.e. swapping two adjacent characters counts as
EpiT(X.Y) one edit
1 m « length[X] .
2 n« lengthlY] Space requirements: O(nm)
3 fori—0tom * Weight insertion, deletion and substitution differently
4 d[i,0] — i
5 forj—0ton Running time: ©(nm . - . . . -
6 do,j] — j 9 (nm) o Weight specific character insertion, deletion and substitutions
7 fori—1ltom differenfly
8 for j— 1ton
9 d[i,j] = min(1+d[i — 1,], . e
1+ (1[[1'.j - 1]]. o Length normalize the edit distance
DIFF(2i,95) +d[i — 1,5 — 1])
10 return dfm,n]

Skiers and Skis

Skiss 15579121213
Skiers: 6771012

What is the optimal matching?

79

20

