
10/13/22

1

DYNAMIC PROGRAMMING:
EVEN MORE FUN!
David Kauchak
CS 140 – Fall 2022

1

Admin

Assignment 6

2

Mentor hours this week

Thursday: 6-8pm (Aidan)
Friday: 1-3pm (Emily)
Saturday: 9:30-11:30am (Millie)
Sunday: 7-9pm (Carl), 8-10pm (Alan)

3

LC meetings

Thursday:
¤ 8-9pm (Emily—Edmunds upstairs, Carl—Edmunds upstairs)

Friday:
¤ 9-10am (Millie—Edmunds downstairs)
¤ 2-3pm (Jiahao—Edmunds downstairs, Aidan)

¤ 3-4pm(Jiahao—Edmunds downstairs)
¤ 4-5pm (Millie)

4

10/13/22

2

Longest increasing subsequence

Given a sequence of numbers X = x1, x2, …, xn find
the longest increasing subsequence
(i1, i2, …, im), that is a subsequence where numbers in
the sequence increase.

5 2 8 6 3 6 9 7

5

Longest increasing subsequence

5 2 8 6 3 6 9 7

Given a sequence of numbers X = x1, x2, …, xn find
the longest increasing subsequence
(i1, i2, …, im), that is a subsequence where numbers in
the sequence increase.

6

1a: optimal substructure

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

What would a solution to a subproblem
look like?

5 2 8 6 3 6 9 7

{𝑖1, 𝑖2, … , 𝑖𝑚}

7

1a: optimal substructure

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

5 2 8 6 3 6 9 7

{𝑖1, 𝑖2, … , 𝑖𝑚}

{𝑖2, … , 𝑖𝑚} for the sequence
starting at index i2

8

10/13/22

3

1a: optimal substructure

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

Assume: 𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑚 is a solution to 𝑥1…𝑥𝑛 but
𝑖2, 𝑖3, … , 𝑖𝑚 is not a solution to 𝑥!!…xn

Then some solution to 𝑥!!…xm exists, 𝑖′2, 𝑖′3, … , 𝑖"𝑘 where k>
𝑚.

We could create a solution 𝑖1, 𝑖′2, 𝑖′3, … , 𝑖"𝑘 to the original
problem that is a better solution ... contradiction

Proof by contradiction:

9

1b: recursive solution

5 2 8 6 3 6 9 7

Is 5 part off the LIS?

10

1b: recursive solution

5 2 8 6 3 6 9 7

Two options:
Either 5 is in the
LIS or it’s not

11

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

12

10/13/22

4

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

13

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

This would allow for the option of
sequences starting with 3 which
are NOT valid!

14

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS’(8 6 3 6 9 7)

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 5?

15

1b: recursive solution

5 2 8 6 3 6 9 7

5 + LIS’(6 3 6 9 7)
5 + LIS’(6 9 7)
5 + LIS’(9 7)
5 + LIS’(7)

include 5

5 + LIS’(8 6 3 6 9 7)

16

10/13/22

5

1b: recursive solution

5 2 8 6 3 6 9 7
don’t
include 5

LIS(2 8 6 3 6 9 7)
Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS’?

17

1b: recursive solution

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

And what is LIS’ defined as (recursively)?

18

1b: recursive solution

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

Longest increasing sequence starting at i

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*#

𝐿𝐼𝑆′(𝑗)

19

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’:

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

20

10/13/22

6

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

21

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

22

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

23

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

24

10/13/22

7

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

25

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

26

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

27

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

28

10/13/22

8

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 4 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

29

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

30

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('{max)(iLISXLIS
i

=

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

31

2: DP solution (bottom-up)

What does the data structure for
storing answers look like?

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

32

10/13/22

9

2: DP solution (bottom-up)

1-D array: only one thing changes
for recursive calls

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

33

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?

To calculate LIS’(n), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

34

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?
LIS’(n) and that is well-defined for this problem

To calculate LIS’(i), what are all the subproblems we need to calculate?
This is the “table”.
LIS’(1) … LIS’(n)

How should we fill in the table?
n à 1

Where will the answer be?
max(LIS’(1)…LIS’(n))

𝐿𝐼𝑆! 𝑖 = 1 + max
":$%"&' (') *"+*$

𝐿𝐼𝑆′(𝑗)

35

2: DP solution (bottom-up)

36

10/13/22

10

2: DP solution (bottom-up)

start from the end (bottom)

37

2: DP solution (bottom-up)

𝐿𝐼𝑆) 𝑖 = 1+ max
:,-./ 0/1 2*32,

𝐿𝐼𝑆′(𝑗)

38

2: DP solution (bottom-up)

)}('{max)(iLISXLIS
i

=

39

3: Analysis

Space requirements?

Running time?

40

10/13/22

11

3: Analysis

Space requirements: Θ(n)

Running time: Θ(n2)

41

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

42

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

43

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

Insertion:

ABACED ABACCED DABACCED

Insert
‘C’

Insert
‘D’

44

10/13/22

12

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

45

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED

Delete
‘A’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

46

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED BACE

Delete
‘A’

Delete
‘D’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

47

Edit distance
(aka Levenshtein distance)

Substitution:

ABACED ABADED ABADES

Sub ‘D’ for ‘C’ Sub ‘S’ for ‘D’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

48

10/13/22

13

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

49

Edit distance examples

Edit(Happy, Hilly) = 3

Operations:

Sub ‘a’ for ‘i’ Hippy

Sub ‘l’ for ‘p’ Hilpy

Sub ‘l’ for ‘p’ Hilly

50

Edit distance examples

Edit(Banana, Car) = 5

Operations:

Delete ‘B’ anana

Delete ‘a’ nana

Delete ‘n’ naa

Sub ‘C’ for ‘n’ Caa

Sub ‘a’ for ‘r’ Car

51

Edit distance examples

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple

Sub ‘A’ for ‘i’ Ample

Sub ‘m’ for ‘p’ Apple

52

10/13/22

14

Edit distance

Why might this be useful?

53

Is edit distance symmetric?

that is, is Edit(s1, s2) = Edit(s2, s1)?

Why?
¤ sub ‘i’ for ‘j’→ sub ‘j’ for ‘i’
¤ delete ‘i’→ insert ‘i’
¤ insert ‘i’→ delete ‘i’

Edit(Simple, Apple) =? Edit(Apple, Simple)

54

Calculating edit distance

X = A B C B D A B

Y = B D C A B A

Ideas? How can we break
this into subproblems?

55

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

After all of the operations, X needs
to equal Y

Start with the last two characters

56

10/13/22

15

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

Operations: Insert

Delete

Substitute

Assume they’re different
How can we make them the same?

57

Insert

X = A B C B D A ?

Y = B D C A B ?

How can we use insert to transform X into Y?

58

Insert

X = A B C B D A ? ?

Y = B D C A B ?

insert the last character of Y to the end of X

59

Insert

X = A B C B D A ? ?

Y = B D C A B ?

How does this make the problem smaller?

60

10/13/22

16

Insert

X = A B C B D A ? ?

Y = B D C A B ?
Edit

),(1),(1...1...1 -+= mn YXEditYXEdit

61

Delete

X = A B C B D A ?

Y = B D C A B ?

How can we use delete to transform X into Y?

62

Delete

X = A B C B D A ?

Y = B D C A B ?

),(1),(...11...1 mn YXEditYXEdit -+=

Edit

63

Substition

X = A B C B D A ?

Y = B D C A B ?

How can we use substitution to transform X into Y?

64

10/13/22

17

Substition

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...11...1 --+= mn YXEditYXEdit

65

Anything else?

X = A B C B D A ?

Y = B D C A B ?

66

Equal

X = A B C B D A ?

Y = B D C A B ?

What if the last characters are equal?

67

Equal

X = A B C B D A ?

Y = B D C A B ?
Edit

),(),(1...11...1 --= mn YXEditYXEdit

68

10/13/22

18

1b: recursive solution - combining results

),(),(1...11...1 --= mn YXEditYXEdit

),(1),(1...11...1 --+= mn YXEditYXEdit

),(1),(...11...1 mn YXEditYXEdit -+=

),(1),(1...1...1 -+= mn YXEditYXEditInsert:

Delete:

Substitute:

Equal:

𝑋𝑛 ≠ 𝑌𝑚

𝑋𝑛 = 𝑌𝑚

How do we decide between these?

69

1b: recursive solution - combining results

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

1: if they’re different
0: if they’re the same

70

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

What does the data structure for
storing answers look like?

71

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

𝐸𝑑𝑖𝑡(𝑋:…$, 𝑌:…")

d 𝑖, 𝑗 : edit distance between 𝑋:…$ and 𝑌:…"

72

10/13/22

19

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?

To calculate 𝑑(𝑛,𝑚), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

73

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?
Edit(X, “”) = len(X) and Edit(“”, Y) = len(Y)

To calculate 𝑑(𝑛,𝑚), what are all the subproblems we need to calculate? This is
the “table”.
i < n and j < m

How should we fill in the table?
i = 1…, j = 1…

Where will the answer be?
d[n,m]

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

74

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

75

3: analysis

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Space requirements?

Running time?

76

10/13/22

20

3: analysis

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Space requirements: Θ(nm)

Running time: Θ(nm)

77

Edit distance variants

l Only include insertions and deletions
l What does this do to substitutions?

l Include swaps, i.e. swapping two adjacent characters counts as
one edit

l Weight insertion, deletion and substitution differently

l Weight specific character insertion, deletion and substitutions
differently

l Length normalize the edit distance

78

Skiers and Skis

Skis: 1 5 5 7 9 12 12 13
Skiers: 6 7 7 10 12

What is the optimal matching?

79

