DYNAMIC PROGRAMMING: EVEN MORE FUN!
CS 140 - Fall }202
CS 140 - Fall }202

1

Mentor hours this week

Thursday: 6-8pm (Aidan)
Friday: 1-3pm (Emily)
Saturday: 9:30-11:30am (Millie)
Sunday: 7-9pm (Carl), 8-10pm (Alan)

Admin

Assignment 6

LC meetings

Thursday:

- 8-9pm (Emily—Edmunds upstairs, Carl—Edmunds upstairs)

Friday:
-9-10 am (Millie—Edmunds downstairs)

- 2-3pm (Jiahao-Edmunds downstairs, Aidan)
$\square 3-4 \mathrm{pm}$ (Jiahao-Edmunds downstairs)
$\square 4-5 \mathrm{pm}$ (Millie)

5

1 a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{gathered}
52863697 \\
\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}
\end{gathered}
$$

What would a solution to a subproblem look like?

Longest increasing subsequence

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find the longest increasing subsequence
($i_{1}, i_{2}, \ldots, i_{m}$), that is a subsequence where numbers in the sequence increase.

$$
52863697
$$

6

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
52863697
$$

$$
\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}
$$

$\left\{i_{2}, \ldots, i_{m}\right\}$ for the sequence starting at index i_{2}

7

1a: optimal substructure

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems
Proof by contradiction:
Assume: $\left\{i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right\}$ is a solution to $x_{1} \ldots x_{n}$ but $\left\{i_{2}, i_{3}, \ldots, i_{m}\right\}$ is not a solution to $x_{i_{2}} \ldots \mathrm{x}_{\mathrm{n}}$

Then some solution to $x_{i_{2}} \ldots \mathrm{x}_{\mathrm{m}}$ exists, $\left\{i^{\prime}{ }_{2}, i^{\prime}{ }_{3}, \ldots, i^{\prime}{ }_{k}\right\}$ where $\mathrm{k}>$ m.

We could create a solution $\left\{i_{1}, i^{\prime}{ }_{2}, i^{\prime}{ }_{3}, \ldots, i^{\prime}{ }_{k}\right\}$ to the original problem that is a better solution ... contradiction

11

10

1 b : recursive solution
$\left.\begin{array}{lllllllll} & 5 & 2 & 8 & 6 & 3 & 6 & 9 & 7\end{array}\right]$

12

13

15

14

1 b: recursive solution

include 5			2	8	6	3	6	9

5 + LIS'(8 636697$)$
5 + LIS'(6 3697 7)
5 + LIS'(6 9 7)
5 + LIS'(97)
5 + LIS'(7)

16

17
1 b : recursive solution

$$
\operatorname{LIS}(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}
$$

Longest increasing sequence for X is the longest increasing sequence starting at any element
$L I S^{\prime}(i)=1+\max _{j: i<j \leq n \text { and } x_{j}>x_{i}} \operatorname{LIS}^{\prime}(j)$
Longest increasing sequence starting at i

19

1 b : recursive solution

$$
\operatorname{LIS}(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}
$$

Longest increasing sequence for X is the longest increasing sequence starting at any element

And what is LIS' defined as (recursively)?

2: DP solution (bottom-up)
$L I S^{\prime}(i)=1+\max _{j: i<j \leq n \text { and } x j>x i} L I S^{\prime}(j)$
LIS' :
52863697
\uparrow

21

23

24

25

26

27
28

2: DP solution (bottom-up)
$L I S^{\prime}(i)=1+\max _{j: i<j \leq n \text { and } x j>x i} L I S^{\prime}(j)$
LIS': $\quad 2 \begin{array}{llllll}2 & 3 & 2 & 1 & 1\end{array}$
52863697
†

29

31

30

32

33
2: DP solution (bottom-up)
$L I S^{\prime}(i)=1+_{j: i<j \leq n \text { and }} \max _{x j>x i} L I S^{\prime}(j)$
What are the "smallest" possible subproblems?
To calculate LIS'(n), what are all the subproblems we
need to calculate? This is the "table".
How should we fill in the table?
Where will the answer be?

34

2: DP solution (bottom-up)
$L I S^{\prime}(i)=1+\max _{j: i<j \leq n ~ a n d ~}^{\text {a }}$ (>xi ${ }^{\text {a }}$ LIS (j)
What are the "smallest" possible subproblems? LIS' (n) and that is well-defined for this problem
To calculate LIS' (i), what are all the subproblems we need to calculate This is the "table". $\operatorname{LIS}^{\prime}(1) \ldots$ LIS' $^{\prime}(n)$
How should we fill in the table? $n \rightarrow 1$
Where will the answer be? $\max \left(L S^{\prime}(1) \ldots . . . L S^{\prime}(n)\right)$

35

2: DP solution (bottom-up)

```
\(\operatorname{LIS}(X)\)
    \(n \leftarrow \operatorname{LENGTH}(X)\)
    create array lis with \(n\) entries
    for \(i \leftarrow n\) to 1
                for \(j \leftarrow i+1\) to \(n\)
            if \(X[j]>X[i]\)
                if \(1+l i s[j]>\max\)
                                    \(\max \leftarrow 1+\operatorname{lis}[j]\)
                \(l i s[i] \leftarrow \max\)
    \(\max \leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\)
                if \(l i s[i]>\max\)
                    \(\max \leftarrow l i s[i]\)
    return max
```

36

37

39

38

40

41

43

Another solution

Can we use LCS to solve this problem?
52863697
LCS
23566789

42

44

Edit distance
 (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

ABACED

45

Edit distance
 (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:

47

Edit distance
 (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion:
$A B A C E D \quad \square B A C E D$
Delete
'A'

46

Edit distance
 (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Substitution:

```
        ABACED }\square\mathrm{ ABADED }\square\mathrm{ ABADES
    Sub 'D' for 'C' Sub 'S' for 'D'
```

48

49

Edit distance examples

$\operatorname{Edit}($ Banana, Car $)=5$

Operations:

Delete 'B'	anana
Delete 'a'	nana
Delete ' n '	naa
Sub ' C ' for ' n '	Caa
Sub 'a' for ' r '	Car

51

Edit distance examples

Edit(Happy, Hilly $)=3$

Operations:

Sub 'a' for 'i'	Hippy
Sub ' I ' for ' p '	Hilpy
Sub ' l ' for ' p '	Hilly

50

Edit distance examples

Edit(Simple, Apple $)=3$

Operations:
Delete 'S' imple
Sub ' A ' for ' i ' Ample
Sub ' m ' for ' p ' Apple

52

53

55

Is edit distance symmetric?
that is, is $\operatorname{Edit}\left(s_{1}, s_{2}\right)=\operatorname{Edit}\left(s_{2}, s_{1}\right)$?

Edit(Simple, Apple) $=$? Edit(Apple, Simple)

Why?
\square sub ' i ' for ' i ' \rightarrow sub ' i ' for ' i '
\square delete ' i ' \rightarrow insert ' i '
\square insert ' i ' \rightarrow delete ' i '

54

Calculating edit distance

$$
X=A B C B D A ?
$$

$$
Y=B D C A B ?
$$

After all of the operations, X needs to equal Y

Start with the last two characters

56

61

62

63

Substition

How can we use substitution to transform X into Y ? 64

65

66

67

Equal

$$
\begin{aligned}
& X=\underset{\text { Edit }}{\mathrm{ABCBDA} ?} \\
& Y=\mathrm{BDCAB} ?
\end{aligned}
$$

$$
\operatorname{Edit}(X, Y)=\operatorname{Edit}\left(X_{1 \ldots n-1}, Y_{1 . . . m-1}\right)
$$

1 b : recursive solution - combining results	
Insert:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . . n}, Y_{1 \ldots m-1}\right)$
Delete:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 \ldots n-1}, Y_{1 \ldots m}\right)$
$X_{n} \neq Y m$	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right)$
$X_{n}=Y_{m} \underset{\text { Equal: }}{ }$	$\operatorname{Edit}(X, Y)=\operatorname{Edit}\left(X_{1 . . . n-1}, Y_{1 . . . m-1}\right)$
How do we decide between these?	

69

71

70

72

2: DP solution (bottom-up)
$\operatorname{Edit}(X, Y)=\min \left\{\begin{array}{cc} 1+\operatorname{Edit}\left(X_{1 . \ldots n}, Y_{1 . \ldots-1}\right) & \text { insertion } \\ 1+\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 . \ldots n}\right) & \text { deletion } \\ \operatorname{Diff}\left(x_{n}, y_{m}\right)+E \operatorname{Edit}\left(X_{1 . \ldots n-1}, Y_{1 . \ldots m-1}\right) & \text { equal/substitution } \end{array}\right.$
What are the "smallest" possible subproblems?
To calculate $d(n, m)$, what are all the subproblems we need to calculate? This is the "table".
How should we fill in the table?
Where will the answer be?

73

75

2: DP solution (bottom-up)
$\operatorname{Edit}(X, Y)=\min \left\{\begin{array}{cc} 1+\operatorname{Edit}\left(X_{1 \ldots,}, Y_{1 . \ldots-1}\right) & \text { insertion } \\ 1+\operatorname{Edit}\left(X_{1 . n-1}, Y_{1 . \ldots n}\right) & \text { deletion } \\ \operatorname{Diff}\left(x_{n}, y_{m}\right)+\operatorname{Edit}\left(X_{1 . \ldots n-1}, Y_{1 . \ldots m-1}\right) & \text { equal/substitution } \end{array}\right.$
What are the "smallest" possible subproblems? $\operatorname{Edit}(X, " ")=\operatorname{len}(X)$ and Edit("", $Y)=\operatorname{len}(Y)$
To calculate $d(n, m)$, what are all the subproblems we need to calculate? This is the "table". i <n and $\mathrm{i}<\mathrm{m}$
How should we fill in the table? $i=1 \ldots, j=1 \ldots$
Where will the answer be? $d[n, m]$

74

76

77

78

Skiers and Skis
Skis: 15579121213 Skiers: 6771012 What is the optimal matching?

79

