10/11/22

Admin

[
Assignment 6

DYNAMIC PROGRAMMING:
MORE FUN!

David Kauchak
CS 140 — Fall 2022

Where did “dynamic programming” come from2

“I spent the Fall quarter (of 1950) at RAND. My first task Dy nam iC p ro g ramm i n g

was to find a name for multistage decision processes.
“An interesting question is, “Where did the name,

good years for mathematical research. We had a very inter-

esting gentleman in Washington named Wilson. He was

Sex ¢ of Defe . and he lly had a hological . . .
Soar and balred of the word rescarch. T oat aaine ton Method for solving problems where optimal solutions
can be defined in terms of optimal solutions to

term lightly: I'm using it precisely. His face would suffuse,

he would tum red, and he would get violent if le used " .

the term, research, in his presence. You can imng:ephow he Richard Bellman On the Birth of

felt, then, about the term, mathematical. The RAND Cor- Dynamic Programming sub P roblems

poration was employed by the Air Force, and the Air Force

had Wilson as its boss, essentially. Hence. I felt I had to do Stuart Dreyfus AND

something to shield Wilson and the Air Force from the fact

that I was really doing mathematics inside the RAND Cor- http://www.eng.tau.ac.il/~ami/cd/o

poration. What title, what name. could I choose? In the first 1
place I was interested in planning, in decision making, in r50/1526-5463-2002-50-01- the subproblems are overlapping

thinking. But planning, is not a good word for various re:
sons. I decided therefore to use the word, *programmi
I wanted to get across the idea that this was dynamic, this
was multistage, this was time-varying—I thought, let's kill
two birds with one stone. Let’s take a word that has an
absolutely precise meaning, namely dynamic, in the clas-
sical physical sense. It also has a very interesting property
as an adjective, and that is it's impossible to use the word,
dynamic, in a pejorative sense. Try thinking of some com-
bination that will possibly give it a pejorative meaning.
It’s impossible. Thus, 1 thought dynamic programming was
a good name. It was something not even a Congressman
could object to. So 1 used it as an umbrella for my activi-
ties” (p. 159).

0048.pdf

10/11/22

Dynamic programming: steps

1a) optimal substructure: optimal solutions to the problem
incorporate optimal solutions to related subproblems

convince yourself that there is optimal substructure

1b) recursive definition: use this to recursively define the
value of an optimal solution

2) DP solution: describe the dynamic programming table:

size, initial values, order in which it’s filled in, location of
solution

3) Analysis: analyze space requirements, running time

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = X, Xy, ..., X, and
Y= Y1r Y2 eeer Yn

What is the longest common subsequence?

5 6
. o 1+ LCS[i-1, 1] ifx, =
2: DP SO|Uhon LCS[I’j]_{max(LCS[i—l,j],LCS[i,j—l] otherwise
[|
LCS(X,Y):{ 1+LCS(X, Y e) l'fx”fym il0123456
max(LCS(X, ,.,Y),LCS(X.,Y, ,_,) otherwise i yy BDCABA
What types of subproblem 0 xi 000O0O0O0O0
solutions do we need to store? 1TA |0
2B |0
LCS(X1..j, Y1..k) 3C 10 How should we fill in the table?
4B |0
o 1+ LCS[i-1,j-1] ifx, =y, 5D |0
LOS Y= (L CSTi—1. /1. LCS[i. j—1] otherwise 6A |0
N 7B 0
7 8

10/11/22

ST 1= 1+LCS[i—1,j-1] ifx =y, ST 1= 1+LCS[i—1,j-1] ifx,=y,
b= max(LCS[i -1, j1,LCS[i, j—1] otherwise b= max(LCS[i—1, j],LCS[i, j—1] otherwise
jl0123456 ij]012345686
i yy BDCABA i yy BDCABA
0x |0000000O0 Ox [000O0O0O0O
1A 0 To fill in an entry, we may 1A 07 LCS(A, B)
2B 0 need to look: 2B 0
3C |0 ? - upone 3C|o0
4 B 0 - Ie'fi one 4 B 0
5D 0 - diagonal up and left 5D 0
? g 0 Just need to make sure 6A 0
0 these exist 7B 0
9 10
e 1+ LCS[i—1, j—1] ifx =y, e 1+ LCS[i—1, j—1] ifx =y,
e1= max(LCS[i -1, j],LCS[i,j—1] otherwise LJj]_Lmax(LCS[i—l, J1,LCS[i,j—1] otherwise
jl0123456 jl0123456
i yy BDCABA i yy BDCABA
0Ox |0000000O0 Ox [000O0O0O0O
1A |00 1TA | 00007 LCS(A, BDCA)
2B |0 2B |0
3C |0 3C |0
4B |0 4B |0
5D |0 5D |0
6 A |0 6A |0
7B |0 7B |0
11 12

10/11/22

o { 1+LCS[i-1, /1] ifx, =y, o 4 1+LCS[i-1,j-1] ifx,=y,
LCS[i, j1= o o ! LCS[i, j1= — — —
max(LCS[i -1, j1,LCS[i, j—1] otherwise max(LCS[i—1, j],LCS[i, j—1] otherwise
jlo1234586 ijo123456
i yy BDCABA i yy BDCABA
Oxi | 0000000O0 Oxi|0000000O0
1TA | 00001 LCS(A, BDCA) 1TA|0000111
2B |0 2B | 0111122 -CSABCE BDCAB)
3C |0 3C|0112222
4B |0 4B | 011227
5D |0 5D |0
6 A |0 6A |0
7B |0 7B |0
13 14
L[] { l+L¢S[iTl, j—l]. - if x, = -y, L[, /] { 1+L‘CS[if1,j—l]. ' ifx,:%/,
max(LCS[i -1, j1,LCS[i, j—1] otherwise max(LCS[i—1, j],LCS[i, j—1] otherwise
jlo1234586 ijlo1234586
i yy BDCABA i yy BDCABA
Oxi | 0000000O0 0Oxi|0000000O0 Where's th
1A 0000111 1A 0000111 neres He
2B 0111122 -CSABCE BDCAB) 2B 0111122 final answer:
3C| 0112222 3C| 0112222
4B |011223 4B | 0112233
5D |0 5D| 0122233
6 A |0 6A | 0122334
7B |0 7B|012234(4)
15 16

10/11/22

o { 1+LCS[i-1,j-1] ifx, =y, o { 1+LCS[i-1,j-1] if x, =y,
LCS[i, j1= S . ! LCS[i, j1= o . !
max(LCS[i -1, j1,LCS[i, j—1] otherwise max(LCS[i—1, j],LCS[i, j—1] otherwise
jj0123456 jl0123456
i yy BDCABA Space requirements? i yy BDCABA Space requirements: ©(nm)
0x 0000000 0x 0000000 .
1Al 000011 1 unning time? 1A 000011 1 unning time: ©(nm)
2B | 0111122 2B | 0111122
3C| 0112222 3C| 0112222
4B |0112233 4B 0112233
5D | 0122233 5D| 0122233
6 A | 01223314 6 A | 0122334
7B | 0122344 7B | 0122344
17 18
Keeping track of the solution LCSTi, 1= +ICSU-Lj-0 %=y,
|max(LCS[i~1, j1,LCS[i, j—1] otherwise
Our LCS algorithm only calculated the length of the LCS jl012345686
between X and Y i Yi BDCABA
What if we wanted to know the actual sequence? ? 2\' 8 8 8 8?? ?
2B 011112 2 LCS(ABCB, BDCAB)
3C| 0112222
4B | 011227
5D |0
6A |0
7B |0
19 20

10/11/22

LCS[i,j]:{ 1+L.CS[i‘—l,j—1]. - ifx,:'yj LCS[i,j]:(1+L‘CS[i'—l,j—1]. - ifx,:'yj
max(LCS[i -1, j1,LCS[i, j—1] otherwise lmax(LCS[z—l,]],LCS[z,]—1] otherwise
10123456 ij0123456
i yy BDCAB i yy BDCABA
Oxi | 0000000O0 Oxi|0000000O0
1TA 0000111 1TA| 0000111
2B 011112 2 LCS(ABCB, BDCAB) 2B 011112 2 LCS(ABCB, BDCABA)
3C 0112222 3C 0112222
4 B 011223 4 B 011223'7
5D |0 5D |0
6A |0 6A |0
7B |0 7B |0
21 22
LCS[i,j]:l{ l+L¢S[iTI, j—l]. - if x, = -y, L[, /] { 1+L‘CS[if1,j—l]. ' ifx,:%/,
max(LCS[i -1, j1,LCS[i, j—1] otherwise max(LCS[i—1, j],LCS[i, j—1] otherwise
jl0123456 ij]012345686
i yy BDCABA i yy BDCABA
Oxi | 0000000O0 0 x OQQQ\OO\O
1TA 0000111 1TA|0000%11
LCS(ABCB, BDCABA) AN
2B 0111122 2B |0+ 411272 How do we
3C| 0112222 3C 0112222 generate the
4B |0112233 4B |0 1.1 2233 solution from this?
5D |0 5D |0j12223.3
6 A |0 6A | 012 23\3 4
7B |0 7B 0122344
23 24

10/11/22

. 1+ LCS[i—1,j—1] ifx =y, .o
LCS[Z’]]_{max(LCS[i—L JLLCS[i, j-1] otherwise Rod splitting
[|
il0123456 Input: a length 1 and a table of prices for i = 1,2,... m
i yy BDCABA Output: maximum revenue obtainable by cutting up the
0x | 0000000 rod and selling the pieces
L
1A 0000%11
MeA112
2B 0 o 2 We can follow the Exqmple;
3C 011 2222 arrows to generate
“ * e the solution .
4B 0112233 length ¢ 1 2 3 4 5 6 7 8 9 10
5D 0;]242\2;’,\3 price p; 1 5 8 9 10 17 17 20 24 30
6A 10122334 BCBA
7B | 0122344
25 26

1 a: optimal substructure

|
Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

length ¢ 1

4 5 6 7 8 9 10
price p; 1 9

10 17 17 20 24 30

What would a solution look like?

1 a: optimal substructure

|
Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

length ¢ 1

2 34 5 6 7 8 9 10
price p; 1 5 8 9

10 17 17 20 24 30

m
(I3, 1o, s, .., L} where Z L<n
i=1

What would a subproblem solution look like?

27

28

10/11/22

1 a: optimal substructure

|]
Prove: optimal solutions to the problem incorporate

optimal solutions to related subproblems

length ¢ 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30
m
(I, 15, Is, .., L.} where Z L<n
i=1

m
li <n- l1
i=2

{l, I3, ..., ln} where Z

1 a: optimal substructure

|

Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

Proof by contradiction:

Assume: {14, l3, 13, ..., Ln}is a solution to 1, but
{l3, 15, ..., L} is not a solution to n — I3

If that were the case, then some solution to n — [; exists where
the the sum of the prices of the lengths is greater than that for

{l2) 13, ..., ln}.

We could add [; to this subproblem solution and get a better
solution to the n problem... contradiction

29 30
1b: recursive solution 1b: recursive solution

[[
length i 1 2 3 4 5 6 7 8 9 10 length i 1 2 3 4 5 6 7 8 9 10
price p; 1 5 8 9 10 17 17 20 24 30 price p; 1 5 8 9 10 17 17 20 24 30

What should be the first cut?

What are the options?

" @@

t1
CU, 1 How much is left?
price

31

32

10/11/22

1b: recursive solution 1b: recursive solution
[[
length i1 2 3 4 5 6 7 8 9 10 length i1 2 3 4 5 6 7 8 9 10
price p; 1 5 8 9 10 17 17 20 24 30 price p; 1 5 8 9 10 17 17 20 24 30
@@ n@ @
cut] . cut 2 02
price 1 price 5
33 34

1b: recursive solution

length ¢ 1

4 5 6 7 8 9 10
price p; 1 9

10 17 17 20 24 30

Which one should we choose?

Pretend like we have a solver (R) that
gives us the answer to suproblems.

What would R take as input and return?

1b: recursive solution
[

5 6 7 8 9 10

length 4 1 2
5 10 17 17 20 24 30

3 4
price p; 1 8 9

"@D@

R(x) = price for best set of cuts of
ooe length x

(could structure it with the actual cuts,
but focusing on just the price is easier
for now)

35

36

10/11/22

1b: recursive solution 1b: recursive solution
| |
length ¢ 1 2 3 4 5 6 7 8 9 10 length ¢ 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30 price pi 1 5 8 9 10 17 17 20 24 30
" @@ @@
cut 1 cut 1
. n-1 n-1
price 1 price 1
What's the best we can do with this cute 1 + R(n_])
37 38

1b: recursive solution 1b: recursive solution
| |
length ¢ 1 2 3 4 5 6 7 8 9 10 length ¢+ 1 2 3 4 5 6 7 8 9 10
price p; 1 5 8 9 10 17 17 20 24 30 price p; 1 5 8 9 10 17 17 20 24 30
QD@ n@ @
cut 2 cut 2
2 -
price 5 " price 5 n-2
What's the best we can do with this cute 5+ R(n_2)
39 40

10

10/11/22

1b: recursive solution
=

length ¢ 1

34 5 6 7 8 9 10
price p; 1 8 9

10 17 17 20 24 30
" @

What should be the first cut?

1b: recursive solution
=

5 6 7 8 9 10

length ¢ 1 2 3
5 8 10 17 17 20 24 30

4
price p; 1 9

n @

R(n) = max_ {p;+R(n — 1)}

41

42

2: DP solution (from the bottom-up)
=
R(n) = i:rrrllal)fzo{pi +R(n—1)}

What are the smallest possible subproblems?

To calculate R(n), what are all the subproblems we need
to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

2: DP solution (from the bottom-up)
=
R(n) = ir:rrlﬁ)l(zo{pi +R(n-1)}

What are the smallest possible subproblems?
R(0) = 0, R(-i) not possible

43

44

11

10/11/22

2: DP solution (from the bottom-up)
=
R(m) = max_ {pi+R(n—1)}

To calculate R(n), what are all the subproblems we need
to calculate? This is the “table”. R(0)...R(n)

Note: This is filling in a table for all possible integer
lengths from 1 to n.

2: DP solution (from the bottom-up)
=
R(m) = max_ {p;+R(n — 1)}

How should we fill in the table?

R(0) = R(n)

The dependencies are on smaller values

45

46

2: DP solution (from the bottom-up)
=
R(n) = ir:rrllal)l(zo{pi +R(n—1)}

Where will the answer be?
R(n)

2: DP solution

|
DP-Rod-Splitting(n)
r[0] =0
for j = 1ton
max = 0
for i = 1tom
if ;<)
p=p+rj-1U
if p > max
max = p

r(j] = max

return r[n]

47

48

12

10/11/22

3: Analysis

DP-Rod-Splitting(n)

r[0] =0 .
for j = 1ton Space requirements?
max = 0
for i = 1tom Running time?
if <)
p = pi + r[j—1L]
if p > max
max = p
r(j] = max

return r[n]

3: Analysis

DP-Rod-Splitting(n)

r[0] =0 X
for j = 1ton Space requirements: O(n)
max = 0
for i = 1tom Running time: O(nm)
if ;<)
p = pi + r[j—1li
if p > max
max = p
r(j] = max

return r[n]

49

50

0-1 Knapsack problem

0-1 Knapsack — A thief robbing a store finds m items worth

Vi, V2, -, Vm dollars and weight

Wi, Wa, ..., W, pounds, where v; and w; are integers. The thief can
carry at most W pounds in the knapsack. Which items should the
thief take if they want to maximize value?

Repetition is allowed, that is you can take multiple copies of any

1 a: optimal substructure
Prove: optimal solutions to the problem incorporate
optimal solutions to related subproblems

Proof by contradiction:

Assume: {iy, i3, i3, ..., ix } is a solution to W but
{i2, i3, ..., ik} is not a solution to W — w;,

Then some solution to W — w; exists, {i'2,i'3, ..., i"n} where the
iy r

ttem sum of the values of the items is greater than for {iy, i, ..., ik}
We could create a solution {i1,i'2,i'3, ..., i’} to the original
problem that has more value... contradiction

13

10/11/22

1b: recursive solution 2: DP solution (from the bottom-up)
= =
K(w)=max{K(w—w,)+v,}

K(w) =max{K(w-w,)+v,}
o What are the smallest possible subproblems?
K(0) =0

To calculate K(w), what are all the subproblems we need
to calculate? This is the “table”. K(0) ... K(W)

How should we fill in the table? K(1) 2> K(W)

Where will the answer be? K(W)

53 54
3: Analysis Memoization
|] |
K(w)=max{K(w—w,)+v,} Sometimes it can be a challenge to write the function in a bottom-
s up fashion

What are the smallest possible subproblems? K(0) = 0

To caleulate K(w), what are all the subproblems we need to calculate? This is the Memoization:

“table”. K(0) ... K(W) Write the recursive function top-down

Alter the function to check if we've already calculated the value
How should we fill in the table2 K(0) 2> K(W)

If so, use the pre-calculate value

Where will the answer be? K(W) If not, do the recursive call(s)

Space requirements: O(W)

Running time: O(Wm)

55 56

14

10/11/22

Memoized fibonacci

FisoNacci(n)
1 ifn=1lorn=2

2 return 1
3 else
4 return FiBonacci(n — 1) + FiBonacci(n — 2)

FIBONACCI-MEMOIZED(n)

1 fib[l] —1

2 fib[2] —1

3 fori—3ton

4 fibli] — oo

5 return FiB-LOOKUP(n)

FiB-LOOKUP(n)

1 if fib[n] < o

2 return fib[n]

3 x+« FiB-Lookupr(n — 1) + FiB-Lookupr(n — 2)
4 if x < fib[n]

5 fibln] — =

6 return fib[n]

Memoized fibonacci

FiBoNaccr(n)
1 ifn=1lorn=2

2 return 1
3 else
4 return FiBoNacci(n — 1) + FiBoNacci(n — 2)

FiBoNAccI-MEMOIZED(n)

1 fib[l] —1

2 fib[2] —1

3 fori—3ton Use o to denote
4 fibi] — oc uncalculated

=

5 return FIB-LOOKUP(72)

Fis-Lookup(n)

1 if fib[n] <

2 return fib[n]

3 x« FiB-Lookupr(n — 1) + FiB-Lookup(n — 2)
4 if » < fibn]

B fibln] — =

6 return fib[n]

=

57

58

Memoized fibonacci

FiBoNacci(n)
1 ifn=1lorn=2

2 return 1
3 else
4 return FiBonacci(n — 1) + FiBonacci(n — 2)

FIBONACCI-MEMOIZED(n) What else could we use

1 fib[l] —1 besides an array?

2 fib[2] —1

3 fori—3ton Use « to denote
4 fibli] — oo uncalculated

5 return FiB-LOOKUP(n)

FiB-LoOKUP(n)

1 if fibln] <

2 return fib[n]

3z« FiB-Lookup(n — 1) + FiB-LooKUP(n — 2)
4 if x < fibn]

5 fib[n] — =z

6 return fib[n]

Memoized fibonacci

FiBoNacci(n)

1 ifn=1lorn=2

2 return 1
3 else
4 return FiBoNacci(n — 1) + FIBoNacci(n — 2)

FiBoNAccI-MEMOIZED(n)

1 fibl] —1

2 fib[2] —1

3 fori—3ton

4 fibli] — oc

5 return FiB-LOOKUP(n)

FiB-Lookup(n)

1 if fib[n] < oo

2 return fib[n]
3z« FiB-Lookup(n — 1) + FiB-LooKup(n — 2)
4 if x < fibn]

5 fibln] — x

6 return fib[n]

Check if we already
calculated the value

@

59

60

15

10/11/22

Memoized fibonacci

FiBoNacci(n)
1 ifn=1lorn=2

2 return 1

3 else

1 return FiBonacci(n — 1) + FiBonacci(n — 2)

FIiBoNACCI-MEMOIZED(n)
1 fib[l] —1

2 fib[2] —1

3 fori—3ton
4 fibli] —

5 return FiB-LOOKUP(n)
FiB-Lookup(n)

1 if fib[n] < o

2 return fib[n|

3 2« FiB-Lookupr(n — 1) + FiB-Lookupr(n — 2) ‘ calculate the value
4 if x < fib[n]
5

6

fibn] — x
return fib[n]

Memoized fibonacci

FiBoNaccr(n)
1 ifn=1lorn=2
2 return 1
3 else
4

return FiBoNacci(n — 1) + FiBoNacci(n — 2)

FiBoNAccI-MEMOIZED(n)
1 fib[l]] —1

2 fib[2] —1

3 fori—3ton

4 fibli] —

5 return FIB-LOOKUP(n)

FiB-LooKup(n)

if fib[n] < oo
return fib[n]

FiB-Lookup(n — 1) + FiB-Lookup(n — 2)

61

Memoization
[

Pros

Can be more intuitive to code/understand
Can be memory savings if you don’ t need answers to all
subproblems

Cons

Depending on implementation, larger overhead because of
recursion (though often the functions are tail recursive)

63

62

16

