

1

3

Dynamic programming

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to subproblems

AND
the subproblems are overlapping

Admin

Assignment 6 \square
2

Dynamic programming: steps

1a) optimal substructure: optimal solutions to the problem incorporate optimal solutions to related subproblems
\square convince yourself that there is optimal substructure
lb) recursive definition: use this to recursively define the value of an optimal solution
2) DP solution: describe the dynamic programming table: \square size, initial values, order in which it's filled in, location of solution
3) Analysis: analyze space requirements, running time

5

7

LCS problem

Given two sequences X and Y, a common subsequence is a subsequence that occurs in both X and Y
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$

What is the longest common subsequence?

6

$L C S[i, j]=$	$\begin{array}{cc} 1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise } \end{array}$
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B & D & C A B A B \end{array}$
$\begin{array}{ll} 0 & \mathrm{x}_{\mathrm{i}} \\ 1 & \mathrm{~A} \\ 2 & \mathrm{~B} \\ 3 & \mathrm{C} \\ 4 & \mathrm{~B} \\ 5 & \mathrm{D} \\ 6 & \mathrm{~A} \\ 7 & \mathrm{~B} \end{array}$	0 0 0 0 0 0

8

9

$$
L C S[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & i f x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

$\left.\begin{array}{lll|llllllllll} & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & & y_{j} & B & D & C & A & B & A\end{array}\right]$

11

10

12

13

15

$$
L C S[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

i^{j}	$\begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_{j} & \text { D } & \text { CAABA } \end{array}$
$0 \mathrm{xi}_{\text {i }}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	011223
5 D	0
6 A	0
7 B	0

14
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & i \text { f } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

i	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B & D & C A B A A \end{array}$	
$0 \mathrm{xi}_{i}$	0000000	
1 A	00000111	Where's the
2 B	0111122	final answer?
3 C	0112222	
4 B	0112233	
5 D	0122233	
6 A	0122334	
7 B	0122344	

16

$L C S[i, j]=\left\{\begin{array}{cl} 1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise } \end{array}\right.$		
j	$\begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ y_{j} & B & D & C & A \end{array}$	Space requirements?
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	00000111	Running time?
2 B	0111122	
3 C	0112222	
4 B	0112233	
5 D	0122233	
6 A	0122334	
7 B	0122344	

17

Keeping track of the solution
Our LCS algorithm only calculated the length of the LCS
between X and Y
What if we wanted to know the actual sequence?

19

18

20

$L C S[i, j]=$	$1+L C S[i-1, j-1]$ if $x_{i}=y_{j}$ $\max (L C S[i-1, j], L C S[i, j-1]$ otherwise
i^{j}	$\begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ \mathrm{y}_{\mathrm{j}} \mathrm{~B} & \mathrm{D} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \end{array}$
$0 \mathrm{xi}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	$0111122 \operatorname{lcS}(\mathrm{ABCB}, \mathrm{BDCAB})$
3 C	0112222
4 B	011223
5 D	0
6 A	0
7 B	0

21

23

$$
L C S[i, j]=\left\{\begin{array}{cl}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

	$\begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ \mathrm{y}_{\mathrm{j}} \mathrm{~B} & \mathrm{D} & \mathrm{C} & \text { ABAA } \end{array}$
$0 \mathrm{xi}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	0112233
5 D	0
6 A	0
7 B	0

$L C S[i, j]=\{$	$\frac{1+L C S[i-1, j-1]}{\max (L C S[i-1, j], L C S[i, j-1]}$	if $x_{i}=y_{j}$
i^{j}	$\begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_{j} & B & D & C A B B A \end{array}$	LCS(ABCB, BDCABA)
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	0000111	
2 B	0111122	
3 C	0112222	
4 B	011223 ?	
5 D	0	
6 A	0	
7 B	0	

22
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

$i^{\text {j }}$	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B & D & C & A B C A \end{array}$	
$0 \mathrm{xi}_{i}$	0000000	
1 A	000011	
2 B	$0{ }_{4}$	How do we
3 C	0.14222	generate the
4 B	0112233	solution from this?
5 D	012223.3	
6 A	0122334	
7 B	0122344	

24

25

1 a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

What would a solution look like?

27

Rod splitting

Input: a length n and a table of prices for $i=1,2, \ldots m$ Output: maximum revenue obtainable by cutting up the rod and selling the pieces

Example:

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

26

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

$$
\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=1}^{m} l_{i} \leq n
$$

What would a subproblem solution look like?

28

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{aligned}
& \begin{array}{llllllllllll}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& \begin{array}{llllllllllll}
\text { price } & p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array} \\
& \left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=1}^{m} l_{i} \leq n \\
& \left\{l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=2}^{m} l_{i} \leq n-l_{1}
\end{aligned}
$$

29

31

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

Proof by contradiction:
Assume: $\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\}$ is a solution to n, but $\left\{l_{2}, l_{3}, \ldots, l_{m}\right\}$ is not a solution to $n-l_{1}$

If that were the case, then some solution to $n-l_{1}$ exists where the the sum of the prices of the lengths is greater than that for $\left\{l_{2}, l_{3}, \ldots, l_{m}\right\}$.

We could add l_{1} to this subproblem solution and get a better solution to the n problem... contradiction

30

1 b : recursive solution										
length i 1 2 3 4 5 6 7 8 9 10 price p_{i} 1 5 8 9 10 17 17 20 24 30										
cut 1 price 1	How much is left?									

32

33

35

34

36

37

1 b : recursive solution

length	i	1	2	3	4	5	6	7	8	9	10
price	p_{i}	1	5	8	9	10	17	17	20	24	30

n
cut 1
price 1

$$
1+R(n-1)
$$

38

39

40

41

43

$$
R(n)=\max _{i: n-l_{i} \geq 0}\left\{p_{i}+R\left(n-l_{i}\right)\right\}
$$

What are the smallest possible subproblems? $R(0)=0, R(-i)$ not possible

2: DP solution (from the bottom-up)

\qquad
\square

44

45

47
2: DP solution (from the bottom-up)

$$
R(n)=\max _{i: n-l_{i} \geq 0}\left\{p_{i}+R\left(n-l_{i}\right)\right\}
$$

How should we fill in the table?
$R(0) \rightarrow R(n)$
The dependencies are on smaller values

46

```
DP-Rod-Splitting(n)
    r[0] = 0
    for j = 1ton
        max = 0
        for i=1 tom
            if li
                p= pi}+r[j-\mp@subsup{l}{i}{}
                if p> max
                        max = p
        r[j] = max
    return r[n]
```

48

3: Analysis	
```DP-Rod-Splitting(n) r[0] = 0 for j=1 to n Space requirements? max = 0 for i=1 to m Running time? if }\mp@subsup{l}{i}{}\leq p=pi+r[j-li] if p> max max = p r[j] = max return r[n]```	

49

## 0-1 Knapsack problem

0-1 Knapsack - A thief robbing a store finds $m$ items worth $v_{1}, v_{2}, \ldots, v_{m}$ dollars and weight
$w_{1}, w_{2}, \ldots, w_{m}$ pounds, where $v_{i}$ and $w_{i}$ are integers. The thief can carry at most W pounds in the knapsack. Which items should the thief take if they want to maximize value?

Repetition is allowed, that is you can take multiple copies of any item

3: Analysis	
```DP-Rod-Splitting(n) r[0] = 0 for j=1 ton Space requirements: \Theta(n) max = 0 for i=1 to m Running time: \Theta(nm) if li p=pi+r[j-li] if p> max max = p r[j] = max return r[n]```	

50

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

Proof by contradiction:
Assume: $\left\{i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right\}$ is a solution to W but
$\left\{i_{2}, i_{3}, \ldots, i_{k}\right\}$ is not a solution to $\mathrm{W}-w_{i_{1}}$
Then some solution to $\mathrm{W}-w_{i_{1}}$ exists, $\left\{i^{\prime}{ }_{2}, i^{\prime}{ }_{3}, \ldots, i^{\prime}{ }_{n}\right\}$ where the sum of the values of the items is greater than for $\left\{i_{2}, i_{3}, \ldots, i k\right\}$

We could create a solution $\left\{i_{1}, i^{\prime} 2, i^{\prime} 3, \ldots, i^{\prime}{ }_{n}\right\}$ to the original problem that has more value... contradiction

1 b: recursive solution
$K(w)=\max _{\substack{w, w \leq w}}\left\{K\left(w-w_{i}\right)+v_{i}\right\}$

53
3: Analysis

$$
K(w)=\max _{i: w_{i} \leq w}\left\{K\left(w-w_{i}\right)+v_{i}\right\}
$$

What are the smallest possible subproblems? $\mathrm{K}(0)=0$
To calculate $\mathrm{K}(\mathrm{w})$, what are all the subproblems we need to calculate? This is the
"table". $\mathrm{K}(0) \ldots \mathrm{K}(\mathrm{W})$
How should we fill in the table? $\mathrm{K}(0) \rightarrow \mathrm{K}(\mathrm{W})$
Where will the answer be? $\mathrm{K}(\mathrm{W})$
Space requirements: $\Theta(\mathrm{W})$
Running time: $\Theta(\mathrm{Wm})$

55

2: DP solution (from the bottom-up)

$$
K(w)=\max _{i: w_{i} \leq w}\left\{K\left(w-w_{i}\right)+v_{i}\right\}
$$

What are the smallest possible subproblems?
$K(0)=0$

To calculate $K(w)$, what are all the subproblems we need to calculate? This is the "table". K(O) ... K(W)

How should we fill in the table? $K(1) \rightarrow K(W)$
Where will the answer be? $K(W)$
54
Memoization

Sometimes it can be a challenge to write the function in a bottom-
up fashion
Memoization:
- Write the recursive function top-down
- Alter the function to check if we've already calculated the value
- If so, use the pre-calculate value
\square If not, do the recursive call(s)

56

57

59

Memoized fibonacci

Fibonacci(n)
1 if $n=1$ or $n=$
2 return 1
3
4 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-Memoized (n)
$1 \quad$ fib $[1] \leftarrow 1$
$2 \mathrm{fib}[2] \leftarrow 1$
3 for $i \leftarrow 3$ to $n \quad$ Use ∞ to denote
4 for $i \leftarrow 3$ to n uncalculated

Fib-Lоокup(n)
1 if $f i b[n]<\infty$
2 return fib[n]
$3 \quad x \leftarrow \operatorname{Fib-Lookup}(n-1)+\operatorname{Fib}-\operatorname{LookUP}(n-2)$
4 if $x<f i b[n]$
$f i b[n] \leftarrow x$
return $f i b[n]$
58

60

```
Memoized fibonacci
    Fibonacci \((n)\)
    1 if \(n=1\) or \(n=2\)
    2 return 1
    3
4 else
        return \(\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)\)
        Fibonacci-Memoized \((n)\)
        \(1 \quad f i b[1] \leftarrow 1\)
        \(2 f i b[2] \leftarrow 1\)
    3 for \(i \leftarrow 3\) to \(n\)
    4 for \(i \leftarrow 3\) fo \(n\)
    5 return Fib-Lookup ( \(n\) )
    Fib-Lookup(n)
    1 if \(f i b[n]<\infty\)
    \begin{tabular}{|l|l}
2 & return fib \([n]\) \\
\hline 3 & \(x \leftarrow \operatorname{Fib-LOOKUP}(n-1)+\operatorname{Fib}-\operatorname{LOOKUP}(n-2)\) \\
colculate the value
\end{tabular}
    4 if \(x<f i b[n]\)
    \(5 \quad\) fib \(|n| \leftarrow x\)
    6 return fib[n]
```

61

Memoized fibonacci
Fibonacci (n)
1 if $n=1$ or $n=2$
2 else return 1
3
4 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-MEmoized (n)
$1 \quad$ fib $[1] \leftarrow 1$
$2 \mathrm{fib}[2] \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad$ fib $[i] \leftarrow \infty$
5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return fib $[n$
$3 x \leftarrow \operatorname{Fib-Lookup}(n-1)+\operatorname{Fib}-\operatorname{Lookup}(n-2)$
4 if $x<f i b[n] \quad$ store the value
6 return $f \imath b[n]$.
62

63

