

1

Algorithmic "techniques"

Iterative/incremental: solve problem of size n by first solving problem of size $\mathrm{n}-1$.

Divide-and-conquer: divide problem into independent subproblems. Solve each subproblem independently. Combine solutions to subproblem to create solution to the original problem.

4 solving problan of size n-1.

Admin

Sakai/gradescope up to date

Dynamic programming

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to subproblems

AND
the subproblems are overlapping

7

9

Running time

Fibonacci(n)
1 if $n=1$ or $n=2$
else return 1
else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Each call creates two recursive calls

Each call reduces the size of the problem by 1 or 2

Creates a full binary of depth n
$O\left(2^{n}\right)$
8

10

11

Dynamic programming: steps

1a) optimal substructure: optimal solutions to the problem incorporate optimal solutions to related subproblems
\square convince yourself that there is optimal substructure
1b) recursive definition: use this to recursively define the value of an optimal solution
2) DP solution: describe the dynamic programming table: \square size, initial values, order in which it's filled in, location of solution
3) Analysis: analyze space requirements, running time

12

14

15

1 b : recursive definition

Fibonacci:

$$
F(n)=?
$$

1 b : recursive definition

Define a function and clearly define the inputs to the function

The function definition should be recursive with respect to multiple subproblems
\square pretend like you have a working function, but it only works on smaller problems

Key: subproblems will be overlapping, i.e., inputs to subproblems will not be disjoint

16

1 b : recursive definition

Fibonacci:

$$
F(n)=F(n-1)+F(n-2)
$$

18

2: DP solution
The recursive solution will generally be top-down, i.e., working from larger problems to smaller
DP solution: - work bottom-up, from the smallest versions of the problem to the largest - store the answers to subproblems in a table (often an array or matrix) - to build bigger problems, lookup solutions in the table to subproblems

19

21

2: DP solution

$F(n)=F(n-1)+F(n-2)$

What are the smallest possible values
(subproblems)?

To calculate $\mathrm{F}(\mathrm{n})$, what are all the subproblems we need to calculate? This is the "table".

How should we fill in the table?

20

2: DP solution
```Fibonacci-DP \((n)\) \(f i b[1] \leftarrow 1\) \(f i b[2] \leftarrow 1\) for \(i \leftarrow 3\) to \(n\) \(f i b[i] \leftarrow f i b[i-1]+f i b[i-2]\) return \(f i b[n]\)```
Store the intermediary values in an array (fib)

22


23

## Counting binary search trees

How many unique binary search trees can be created using the numbers 1 through $n$ ?


25

3: Analysis
```Fibonacci-DP( \(n\) ) \(f i b[1] \leftarrow 1\) fib[2] \(\leftarrow 1\) for \(i \leftarrow 3\) to \(n\) \(f i b[i] \leftarrow f i b[i-1]+f i b[i-2]\) return \(f i b[n]\)```
Space requirements: $\Theta(n)$ Running time: $\Theta(n)$

24

26

31

1 a: optimal substructure
optimal solutions to a problem incorporate optimal solutions to related subproblems

$$
T(i-1) \quad T(n-i)
$$

By definition of binary trees: binary trees are recursive structures

32

34

35

37

36

A recursive implementation

$$
T(n)=\sum_{i=1}^{n} T(i-1) * T(n-i)
$$

$\operatorname{BST}-\operatorname{Count}(n)$
1 if $n=0$
$\begin{array}{ll}\text { else } & \text { return } \\ & \\ \text { sum }=0 \\ \text { for } i \leftarrow 1\end{array}$

Like with Fibonacci, we're repeating a lot of work

38
2: DP solution (from the bottom-up)

$$
T(n)=\sum_{i=1}^{n} T(i-1) * T(n-i)
$$

What are the smallest possible subproblems?
To calculate $T(n)$, what are all the subproblems we need
to calculate? This is the "table".
How should we fill in the table?

39

2: DP solution (from the bottom-up)

$$
T(n)=\sum_{i=1}^{n} T(i-1) * T(n-i)
$$

What are the smallest possible subproblems? $T(0)=1, T(1)=1$

Need to think carefully about base cases/edge cases

41

2: DP solution (from the bottom-up)

$$
T(n)=\sum_{i=1}^{n} T(i-1) * T(n-i)
$$

What are the smallest possible subproblems?
$T(0)=1, T(1)=1$
To calculate $T(n)$, what are all the subproblems we need
to calculate? This is the "table". $\mathrm{T}(0) \ldots \mathrm{T}(\mathrm{n}-1)$
How should we fill in the table? $T(0) \rightarrow T(n)$

43

11
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & & \ldots & n\end{array}$

45

```
BST-Count-DP(n)
```

BST-Count-DP(n)
c[0]=1
c[0]=1
c[1]=1
c[1]=1
for }k\leftarrow2\mathrm{ to }
for }k\leftarrow2\mathrm{ to }
c[k]\leftarrow0
c[k]\leftarrow0
for }i\leftarrow1\mathrm{ to }
for }i\leftarrow1\mathrm{ to }
return c[n]
return c[n]
ck]}\leftarrowc[k]+c[i-1]*c[k-i

```
        ck]}\leftarrowc[k]+c[i-1]*c[k-i
```

5

```
BST-Count-DP(n)
```

$c[0]=1$
$c[0]=1$
$c[1]=1$
$c[1]=1$
for $k \leftarrow 2$ to n
for $k \leftarrow 2$ to n
$c[k] \leftarrow 0$
for $i \leftarrow 1$ to k
$c[k] \leftarrow c[k]+c[i-1] * c[k-i]$
return $c[n]$
$\mathrm{c}[0]]^{*} \mathrm{c}[1]+\mathrm{c}[1]^{*} \mathrm{c}[0]$
11 .
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & \ldots & n\end{array}$
46

51

3: Analysis

BST-Count-DP (n)
$\begin{array}{ll}1 & c[0]=1 \\ 2 & c[1]=1\end{array}$
$2 c[1]=1$
for $k \leftarrow 2$ to n
$c[k] \leftarrow 0$
for $i \leftarrow 1$ to k
$c[k] \leftarrow c[k]+c[i-1] * c[k-i]$
return $c[n]$
Space requirements: $\Theta(n)$
Running time: $\Theta\left(\mathrm{n}^{2}\right)$

53

52

54

Longest common subsequence (LCS)
For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}, a$ a subsequence is a subset of the sequence defined by a set of increasing indices $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$
$X=A B A C D A B A B$
ABA

55

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$
$X=A B A C D A B A B$

ACA

57

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$
X = A B A C D A B A B

ACA?

56

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where $1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$

$$
X=A B A C D A B A B
$$

DCA?

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$
X = ABACDABAB

59

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$

$$
X=A B A C D A B A B
$$

AADAA

Longest common subsequence (LCS)

For a sequence $X=x_{1}, x_{2}, \ldots, x_{n}$, a subsequence is a subset of the sequence defined by a set of increasing indices ($i_{1}, i_{2}, \ldots, i_{k}$) where
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$
X = A B A C D A B A B

AADAA?

60

LCS problem

Given two sequences X and Y, a common subsequence is a subsequence that occurs in both X and Y

Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$

What is the longest common subsequence?

LCS problem

Given two sequences X and Y, a common subsequence is a subsequence that occurs in both X and Y
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$

What is the longest common subsequence?

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

63

1a: optimal substructure

optimal solutions to a problem incorporate optimal solutions to subproblems

Often a proof by contradiction:
Show: optimal solutions incorporate optimal solutions to subproblems

Assume the optimal solution does not contain optimal solutions to subproblems

Show this leads to a contradiction (often that we could create a better solution using the solution to the subproblem)

65

LCS problem

Given two sequences X and Y, a common subsequence is a subsequence that occurs in both X and Y
Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$

What is the longest common subsequence?

$$
\begin{aligned}
& X=A B C B D A B \\
& Y=B D C A B A
\end{aligned}
$$

64

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

Proof by contradiction:
Assume: $s_{1}, s_{2}, \ldots, s_{m}$ is the LCS(X,Y), but s_{2}, \ldots, s_{m} is not the optimal solution to
LCS(substring_after($\left.s_{1}, X\right)$, substring_after($\left.s_{1}, Y\right)$).

If that were the case, then we could make a longer subsequence by:
s_{1} LCS(substring_after($\left.s_{1}, \mathrm{X}\right)$, substring_after($\left.s_{1}, Y\right)$)
contradiction
66

67

1 b : recursive solution
$X=A B C B D A ?$
$Y=B D C A B ?$

Is the last character part of the LCS?

68

1 b : recursive solution
$X=A B C B D A ?$
$Y=B D C A B ?$

Two cases: either the characters are the same or they're different

69

1 b : recursive solution

If they're the same

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 . \ldots m-1}\right)+x_{n}
$$

70

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right)
$$

71

73

1 b : recursive solution
$X=\underset{\text { LCs }}{\text { ABCBDA }}$
$Y=$ BDCABA
If they're different

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)
$$

72

1 b : recursive solution
$X=A B C B D A B$
$Y=B D C A B A$
$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$
(for now, let's just worry about counting the length of the LCS)

74

75

$L C S[i, j]=\left\{\begin{array}{cc}1+L C S(i-1, j-1) & i f x_{i}=y_{j} \\ \max (L C S(i-1, j), L C S(i, j-1) & \text { otherwise }\end{array}\right.$

$\left.\begin{array}{ll|llllllll} & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & & y_{j} & \text { B D D C A B A }\end{array}\right]$

77

2: DP solution

$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 . \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 . . . n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$

What types of subproblem solutions do we need to store?
$\operatorname{LCS}\left(X_{1 \ldots j}, Y_{1 \ldots k}\right)$
$L C S[i, j]=\left\{\begin{array}{cl}1+L C S[i-1, j-1] & i \text { f } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

76

$L C S[i, j]=\left\{\begin{array}{cl} 1+L C S[i-1, j-1] & i f x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise } \end{array}\right.$	
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \end{array}$
$\begin{array}{ll} 0 & x_{i} \\ 1 & \mathrm{~A} \\ 2 & \mathrm{~B} \\ 3 & \mathrm{C} \\ 4 & \mathrm{~B} \\ 5 & \mathrm{D} \\ 6 & \mathrm{~A} \\ 7 & \mathrm{~B} \end{array}$	0 0 0 0 0 0

78

79

$$
L C S[i, j]=\left\{\begin{array}{cl}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

	j	0	1	2	3	4	5	6			
i		y_{j}	B	D	C	A	B	A			
0	x_{i}	0	0	0	0	0	0	0			
1	A	0	$?$								
2	B	0									
3	C	0									
4	B	0									
5	D	0									
6	A	0									
7	B	0									

81

80

82

83

$$
L C S[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

85

$L C S[i, j]=$	$\begin{gathered} 1+L C S[i-1, j-1] \\ \max (L C S[i-1, j], L C S[i, j-1] \end{gathered}$	$\text { if } x_{i}=y_{j}$ otherwise
i^{j}	$\begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \end{array}$	
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	00001	LCS(A, BDCA)
2 B	0	
3 C	0	
4 B	0	
5 D	0	
6 A	0	
7 B	0	

84

86

$L C S[i, j]=$	$\left[\begin{array}{c} 1+L C S[i-1, j-1] \\ \max (L C S[i-1, j], L C S[i, j-1] \end{array}\right.$	$\text { if } x_{i}=y_{j}$ otherwise
j	0123456	Where's the final answer?
	y_{j} B DCABA	
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	0000111	
2 B	0111122	
3 C	0112222	
4 B	0112233	
5 D	0122233	
6 A	0122334	
7 B	0122344	

87

89

88

90

91

93

The algorithm

92

94

95

$$
L C S[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

i^{j}	$\begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_{j} & B & D & C A B B A \end{array}$
$0 \mathrm{x}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	01122 ?
5 D	0
6 A	0
7 B	0

Keeping track of the solution

Our LCS algorithm only calculated the length of the LCS between X and Y

What if we wanted to know the actual sequence?

96

98

99

100

101
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

i	$\begin{array}{lllll} 0 & 1 & 2 & 3 & 4 \\ y_{j} & B & D & C & A \end{array}$	
$0 \mathrm{xi}_{1}$	0000000	
1 A	000011	
2 B	$01-112$	We can follow the
3 C	0.112222	arrows to generate
4 B	01.12233	the solution
5 D	012223,3	
6 A	0122334	BCBA
7 B	0122344	

102

