

1

3

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

4

5

7

6

8

9

11

10

12

13

15

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

14

Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

> not a cycle

16

17

19
Terminology

Cycle - A subset of the edges that form a path such that the first and last node are the same

18

20

21

23

22

24

25
5

Terminology

Strongly connected (directed graphs) Every two vertices are reachable by a path

27

26

28

29

31

30

32

33

35

34

36

37

39
Representing graphs

38

40

41

43

Representing graphs

Adjacency matrix - A $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

ABCDE
A 011010
B 100010
C 00010
D $1 \begin{array}{lllll}1 & 1 & 0 & 1\end{array}$
E 00010

42

Representing graphs
Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$
ABCDE

45

Adjacency list vs. adjacency matrix	
Adjacency list Adjacency matrix Sparse graphs (e.g. web) Space efficient Must traverse the adiacency list to discover is an edge exists Dense graphs Constant time lookup to discover if an edge exists Simple to implement For non-weighted graphs, only requires boolean matrix Can we get the best of both worlds?	

47

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

46

48

49

51

Weighted graphs

Adjacency list
\square store the weight as an additional field in the list

$$
\mathrm{A}: \mathrm{B}: 8 \quad \mathrm{D}: 3
$$

50

Graph algorithms/questions
Graph traversal (BFS, DFS)
Shortest path from a to b
口 unweighted
a weighted positive weights
a negative/positive weights
Minimum spanning trees
Are all nodes in the graph connected?
Is the graph bipartite?

52

53

55

54

56

57

59

60

61

62

63

Tree BFS

64

65

Tree BFS

Does it visit all of the nodes?
If the graph is connected or strongly connected

$$
\begin{array}{lc}
2 & \text { while ! } \operatorname{Empty}(Q) \\
3 & v \leftarrow \operatorname{DEQUEUE}(Q) \\
4 & \operatorname{Visit}(v) \\
5 & \text { for all } c \in \operatorname{Children}(v) \\
6 & \operatorname{Enqueve}(Q, c)
\end{array}
$$

TreebFS(T)
$1 \operatorname{Enqueue}(Q, \operatorname{Root}(T))$
while ! Empty (Q)
$v \leftarrow \operatorname{Dequeue}(Q)$
Visit (v)
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

Tree BFS

What order does the algorithm traverse the nodes?

BFS traversal visits the nodes in increasing distance from the root

```
                                    TreeBFS(T)
                                    Enqueue(Q,Root(T))
                                    while !Empty (Q)
                                    v}\leftarrow\operatorname{Dequeue(Q)
                                    VIsIT (v)
                                    for all ce Children(v)
                                    Enqueue(Q,c)
```

66

Running time of Tree BFS

Adjacency list

- How many times does it visit each vertex?
- How many times is each edge traversed?
$\square \theta(|V|+|E|)-$ for trees, i.e., assuming a connected graph

Adjacency matrix

- For each vertex visited, how much work is done?
$\square \theta\left(|V|^{2}\right)-$ for trees, i.e., assuming a connected graph

TreebFS (T)
Enqueue(Q, Root(T))
while ! $\operatorname{Empty}(Q)$
$v \leftarrow \operatorname{Dequeue}(Q)$
V isit (v)
for all $c \in \operatorname{Children}(v)$
Enqueue (Q, c)

68

69

71

70

72

73

74

75
$\operatorname{BFS}(G, s)$
1 for each $v \in V$
$\operatorname{dist}[v]=\infty$
dist $[s]=0$
$4 \operatorname{Enqueue}(Q, s)$
while ! Empty (Q)

76
$u \leftarrow \operatorname{DEQUEUE}(Q)$
 if $\operatorname{dist}[v]=\infty$
 check if the node has been seen

$$
\begin{aligned}
& \text { ENQUEUE }(Q, v) \\
& \text { dist }[v] \leftarrow \text { dist }[u]
\end{aligned}
$$

77

78

79

80

81

82

83

84

85

86

87

88

89

92

91

93

94

96

95

97

100

101

104

105

108

109

110

DFS on graphs

DFS(G)
1 for all $v \in V$
2 visited $[u] \leftarrow$ false
for all $v \in V$
if $!$ visited $[v]$
$\operatorname{DFS}-\operatorname{Visit}(v)$
until all nodes have been visited repeatedly call DFS-Visit

DFS-VISIT (u)
1 visited $[u] \leftarrow$ true
2 PreVisit(U)
for all edges $(u, v) \in E$
if !visited $[v]$
PostVisit(U)

DFS on graphs

DFS(G)
1 for all $v \in V$
visited $[u] \leftarrow$ false \quad What happened
for all $v \in V$
if !visited[$v]$
DFS-VISIT (v)

DFS-Visit (u)		
1	visited $[u] \leftarrow$ true	
2	$\operatorname{PreVisit}(\mathrm{U})$	
3	for all edges $(u, v) \in E$	
4	if $!$ visited $[v]$	
5	$\operatorname{DFS}-V \operatorname{Visit}(v)$	
6	$\operatorname{PostVisit}(\mathrm{U})$	$\operatorname{TreedFS}(T)$
1	$\operatorname{Push}(S, \operatorname{Root}(T))$	
2	while $!\operatorname{Empty}(S)$	
3	$v \leftarrow \operatorname{Pop}(S)$	
4	$\operatorname{Visit}(v)$	
5	for all $c \in \operatorname{Children}(v)$	
6	$\operatorname{Push}(S, c)$	

What does DFS do?
Finds connected components
Each call to DFS-Visit from DFS starts exploring a new
set of connected components
Helps us understand the structure/connectedness of a
graph

114

116

Connectedness

Given an undirected graph, for every node $u \in V$, can we reach all other nodes in the graph?
Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark nodes as we visit them. If we visit all nodes, return true, otherwise false.

Running time: $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

