
10/4/22

1

GRAPHS
David Kauchak
CS 140 – Fall 2022

1

Admin

Checkpoint corrections

Assignment 3 feedback

2

Graphs

What is a graph?

A

B

C

E
D

F

G

3

Graphs

A graph is a set of vertices V and a set of edges
(u,v) Î E where u,v Î V

A

B

C

E
D

F

G

4

10/4/22

2

Graphs

How do graphs differ? What are graph
characteristics we might care about?

A

B

C

E
D

F

G

5

Different types of graphs

Undirected – edges do not have a direction

A

B

C

E
D

F

G

6

Different types of graphs

Directed – edges do have a direction

A

B

C

E
D

F

G

7

Different types of graphs

A

B

C

E
D

F

G

8

2

7

20

1 7

2

Weighted – edges have an associated weight

8

10/4/22

3

Different types of graphs

Weighted – edges have an associated weight

A

B

C

E
D

F

G

8

2

7

20

1 7

2

9

Terminology

A

B

C

E
D

F

G

Path – A path is a list of vertices p1,p2,…pk where
there exists an edge (pi,pi+1) Î E

10

A

B

C

E
D

F

G

{A, B, D, E, F}

Terminology

Path – A path is a list of vertices p1,p2,…pk where
there exists an edge (pi,pi+1) Î E

11

A

B

C

E
D

F

G

{C, D}

Terminology

Path – A path is a list of vertices p1,p2,…pk where
there exists an edge (pi,pi+1) Î E

12

10/4/22

4

Path – A path is a list of vertices p1,p2,…pk where
there exists an edge (pi,pi+1) Î E

A

B

C

E
D

F

G

A simple path contains
no repeated vertices
(often this is implied)

Terminology

13

A

B

C

E
D

F

G

Terminology

Cycle – A subset of the edges that form a path such
that the first and last node are the same

14

A

B

C

E
D

F

G

Edges: B-A, A-D, D-B

Path: B, A, D, B

Terminology

Cycle – A subset of the edges that form a path such
that the first and last node are the same

15

A

B

C

E
D

F

G

not a cycle

Terminology

Cycle – A subset of the edges that form a path such
that the first and last node are the same

16

10/4/22

5

A

B

C

E
D

F

G

Terminology

Does this graph have a cycle?

Cycle – A subset of the edges that form a path such
that the first and last node are the same

17

Cycle – A subset of the edges that form a path such
that the first and last node are the same

A

B

C

E
D

F

G

not a cycle

Terminology

18

Cycle – A path p1,p2,…pk where p1 = pk

A

B

C

E
D

F

G

cycle

Terminology

19

Connected – every pair of vertices is connected by a path

A

B

C

E
D

F

G

Is this graph
connected?

Terminology

20

10/4/22

6

Connected – every pair of vertices is connected by a path

A

B

C

E
D

F

G

connected

Terminology

21

A

B

C

E
D

F

G

Is this graph
connected?

Terminology

Connected – every pair of vertices is connected by a path

22

A

B

C

E
D

F

G

not connected

Terminology

Connected – every pair of vertices is connected by a path

23

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

A

B

C

E
D

F

G

Is this graph
strongly connected?

Terminology

24

10/4/22

7

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

A

B

C

E
D

F

G

not strongly
connected

Terminology

25

A

B

E
D

F

G

Terminology

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

Is this graph
strongly connected?

26

A

B

E
D

F

G

not strongly
connected

Terminology

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

27

A

B

E
D

F

G

Terminology

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

Is this graph
strongly connected?

28

10/4/22

8

A

B

E
D

F

G

strongly
connected

Terminology

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

29

Different types of graphs

What is a tree (in our terminology)?

A

B

C

E
D

F

G

H

30

Different types of graphs

Tree – connected, undirected graph without any cycles

A

B

C

E
D

F

G

H

31

Different types of graphs

A

B
C

E
D

F

G

H

need to specify root

Tree – connected, undirected graph without any cycles

32

10/4/22

9

Different types of graphs

A

B

C

E
D

F

G

H

Tree – connected, undirected graph without any cycles

33

Different types of graphs

DAG – directed, acyclic graph

A

B

C

E
D

F

G

H

34

Different types of graphs

Complete graph – an edge exists between every node

A

B

C

D

F

35

Different types of graphs

Bipartite graph – a graph where every vertex can be partitioned into two
sets X and Y such that all edges connect a vertex u Î X and a vertex v Î Y

A

B

C

E

D

F

G

36

10/4/22

10

When do we see graphs in
real life problems?
Transportation networks (flights, roads, etc.)

Communication networks

Web

Social networks

Circuit design

Bayesian networks

37

Representing graphs

38

Representing graphs

Adjacency list – Each vertex u Î V contains an
adjacency list of the set of vertices v such that there
exists an edge (u,v) Î E

A

B

C

E
D

A: B D

B: A D

C: D

D: A B C E

E: D

39

Representing graphs

A

B

C

E
D

A: B

B:

C: D

D: A B

E: D

Adjacency list – Each vertex u Î V contains an
adjacency list of the set of vertices v such that there
exists an edge (u,v) Î E

40

10/4/22

11

Representing graphs

Adjacency matrix – A |V|x|V| matrix A such that:

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

41

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

Adjacency matrix – A |V|x|V| matrix A such that:

42

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

Adjacency matrix – A |V|x|V| matrix A such that:

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

43

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

Adjacency matrix – A |V|x|V| matrix A such that:

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

44

10/4/22

12

Representing graphs

A

B

C

E
D

A B C D E
A 0 1 0 1 0
B 1 0 0 1 0
C 0 0 0 1 0
D 1 1 1 0 1
E 0 0 0 1 0

Is it always
symmetric?

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

Adjacency matrix – A |V|x|V| matrix A such that:

45

Representing graphs

A B C D E
A 0 1 0 0 0
B 0 0 0 0 0
C 0 0 0 1 0
D 1 1 0 0 0
E 0 0 0 1 0

A

B

C

E
D

Adjacency matrix – A |V|x|V| matrix A such that:

î
í
ì Î

=
otherwise0

),(if1 Eji
aij

46

Adjacency list vs.
adjacency matrix

Adjacency list Adjacency matrix

Sparse graphs (e.g. web)

Space efficient

Must traverse the adjacency list
to discover is an edge exists

Dense graphs
Constant time lookup to
discover if an edge exists
Simple to implement
For non-weighted graphs,
only requires boolean matrix

Can we get the best of both worlds?

47

Sparse adjacency matrix

Rather than using an adjacency list, use an adjacency
hashtable

A

B

C

E
D

A:

B:

C:

D:

E:

hashtable [B,D]

hashtable [A,D]

hashtable [D]

hashtable [A,B,C,E]

hashtable [D]

48

10/4/22

13

Sparse adjacency matrix

Constant time lookup
Space efficient
Not good for dense graphs, why?

A

B

C

E
D

A:

B:

C:

D:

E:

hashtable [B,D]

hashtable [A,D]

hashtable [D]

hashtable [A,B,C,E]

hashtable [D]

49

Weighted graphs

Adjacency list
¤ store the weight as an additional field in the list

A

B

C

E
D

8

2

3

13

10

A: B:8 D:3

50

Weighted graphs

Adjacency matrix

A

B

C

E
D

8

2

3
13

10

î
í
ì Î

=
otherwise0

),(if Ejiweight
aij

A B C D E
A 0 8 0 3 0
B 8 0 0 2 0
C 0 0 0 10 0
D 3 2 10 0 13
E 0 0 0 13 0

51

Graph algorithms/questions

Graph traversal (BFS, DFS)

Shortest path from a to b
¤ unweighted
¤ weighted positive weights
¤ negative/positive weights

Minimum spanning trees

Are all nodes in the graph connected?

Is the graph bipartite?

52

10/4/22

14

Breadth First Search (BFS) on Trees

53

Tree BFS

A

B

C

ED

F G

Q:
Visited:

54

Tree BFS

A

B

C

ED

F G

Q: A
Visited:

55

Tree BFS

A

B

C

ED

F G

Q:
Visited: A

56

10/4/22

15

Tree BFS

A

B

C

ED

F G

Q: B, D, E
Visited: A

57

Tree BFS

A

B

C

ED

F G

Q: D, E
Visited: A B

58

Tree BFS

A

B

C

ED

F G

Q: D, E, C, F
Visited: A B

59

Tree BFS

A

B

C

ED

F G

Q: E, C, F
Visited: A B D

60

10/4/22

16

Tree BFS

A

B

C

ED

F G

Q: E, C, F Frontier: the set of vertices
that have been visited so far

Visited: A B D

61

Tree BFS

A

B

C

ED

F G

62

Tree BFS

A

B

C

ED

F G

63

Tree BFS

A

B

C

ED

F G

64

10/4/22

17

Tree BFS

A

B

C

ED

F G

65

Tree BFS

What order does the algorithm traverse the nodes?

BFS traversal visits the nodes in increasing distance from
the root

66

Tree BFS

Does it visit all of the nodes?

If the graph is connected or strongly connected

67

Running time of Tree BFS

Adjacency list
¤ How many times does it visit each vertex?
¤ How many times is each edge traversed?
¤ θ(|V|+|E|) – for trees, i.e., assuming a connected graph

Adjacency matrix
¤ For each vertex visited, how much work is done?
¤ θ(|V|2) – for trees, i.e., assuming a connected graph

68

10/4/22

18

BFS Recursively

Hard to do!

69

BFS for graphs

What needs to change for graphs?

Need to make sure we don’t visit a node multiple times

B

D E

F

A

C

G

70

BFS for graphs

What order will BFS visit starting at A (break ties to visit
based alphabetically, with earlier first)?

B

D E

F

A

C

G

71

BFS for graphs

What order will BFS visit starting at A (break ties to visit
based alphabetically, with earlier first)?

B

D E

F

A

C

G

A B D E C F G

72

10/4/22

19

distance variable keeps
track of how far from
the starting node and
whether we’ve seen the
node yet

B

D E

F

A

C

G

73

B

D E

F

A

C

G

74

set all nodes
as unseen

B

D E

F

A

C

G

75

check if the node
has been seen

B

D E

F

A

C

G

76

10/4/22

20

set the node as seen
and record distance

B

D E

F

A

C

G

77

B

D E

F

A

C

G

¥ ¥

¥

¥ ¥

¥¥

78

B

D E

F

A

C

G

0 ¥

¥

¥ ¥

¥¥

Q: A

79

B

D E

F

A

C

G

0 ¥

¥

¥ ¥

¥¥

Q:

80

10/4/22

21

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q: D, E, B

81

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q: E, B

82

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q: B

83

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q: B

84

10/4/22

22

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q:

85

B

D E

F

A

C

G

0 1

¥

¥ ¥

11

Q:

86

B

D E

F

A

C

G

0 1

2

2 ¥

11

Q: F, C

87

B

D E

F

A

C

G

0 1

2

2 3

11

88

10/4/22

23

B

D E

F

A

C

G

0 1

2

2 3

11

89

Runtime of BFS

Nothing changed over our analysis of TreeBFS

91

Runtime of BFS

Adjacency list: O(|V| + |E|)
Adjacency matrix: O(|V|2)

(we won’t assumed connectedness)

92

Depth First Search (DFS)

93

10/4/22

24

Depth First Search (DFS)

94

Tree DFS

A

B

C

ED

F G

Stack

95

Tree DFS

A

B

C

ED

F G

Stack

A

96

Tree DFS

A

B

C

ED

F G

Stack

97

10/4/22

25

Tree DFS

A

B

C

ED

F G

Stack

B
D
E

98

Tree DFS

A

B

C

ED

F G

Stack

B
D
E

What does this assume about
how we add them to the stack?

99

Tree DFS

A

B

C

ED

F G

Stack

B
D
E

Added from right to left: E, then
D, then B

100

Tree DFS

A

B

C

ED

F G

Stack

D
E

101

10/4/22

26

Tree DFS

A

B

C

ED

F G

Stack

C
F
D
E

102

Tree DFS

A

B

C

ED

F G

Stack

F
D
E

103

Tree DFS

A

B

C

ED

F G

Frontier? Stack

D
E

104

Tree DFS

A

B

C

ED

F G

Stack

D
E

105

10/4/22

27

Tree DFS

A

B

C

ED

F G

Stack

E

106

Tree DFS

A

B

C

ED

F G

Stack

107

Tree DFS

A

B

C

ED

F G

Stack

G

108

Tree DFS

A

B

C

ED

F G

Stack

109

10/4/22

28

DFS on graphs

110

DFS on graphs

mark all nodes as
not visited

111

DFS on graphs

until all nodes have been
visited repeatedly call
DFS-Visit

112

DFS on graphs

What happened
to the stack?

113

10/4/22

29

What does DFS do?

Finds connected components

Each call to DFS-Visit from DFS starts exploring a new
set of connected components

Helps us understand the structure/connectedness of a
graph

114

Is DFS correct?

Does DFS visit all of the nodes in a graph?

115

Running time?

Like BFS
¤ Visits each node exactly once
¤ Processes each edge exactly twice (for an undirected

graph)
¤ θ(|V|+|E|)

116

Connectedness

Given an undirected graph, for every node u Î V,
can we reach all other nodes in the graph?
Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark
nodes as we visit them. If we visit all nodes,
return true, otherwise false.

Running time: O(|V| + |E|)

117

