

When do we see graphs in real life problems? Transportation networks (flights, roads, etc.)

Communication networks

Web

Social networks

Circuit design

Bayesian networks

37

38

Breadth First Search (BFS) on Trees

TREEBFS(T)

 $\begin{array}{lll} 1 & \operatorname{Enqueue}(Q,\operatorname{Root}(T)) \\ 2 & \text{while } \operatorname{!Empty}(Q) \\ 3 & v \leftarrow \operatorname{Dequeue}(Q) \\ 4 & \operatorname{Visit}(v) \\ 5 & \text{for all } c \in \operatorname{Children}(v) \\ 6 & \operatorname{Enqueue}(Q,c) \end{array}$

54

56

55

What does DFS do?

Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set of connected components

Helps us understand the structure/connectedness of a graph

114

Is DFS correct?

Does DFS visit all of the nodes in a graph?

DFS(G)1 for all $v \in V$ $\mathbf{2}$ $visited[u] \gets false$ 3 for all $v \in V$ 4 $\mathbf{if} \; ! visited[v] \\$ $\mathbf{5}$

DFS-VISIT(v)

115

Running time? Like BFS Visits each node exactly once Processes each edge exactly twice (for an undirected graph) □ θ(|∨|+|E|)

