CS140 - Example NP Complete reduction

Show that CLIQUE is NP-Complete. (Given a graph G does the graph have a clique of size k.)

1. CLIQUE is in NP.

A solution for click is a set of vertices $V' \subseteq V$. Check the following:

- Check that |V'| = k
- For each pair of vertices $u, v \in V'$ check that $(u, v) \in E$.

There are $O(V^2)$ checks and each check is O(V), so the overall run-time is $O(V^3)$.

2. To show that CLIQUE is NP-Hard we show: INDEPENDENT-SET \leq_p CLIQUE.

(We're assuming INDEPENDENT-SET is NP-Complete.)

- Reduction: given an instance $\langle G, k \rangle$ of INDEPENDENT-SET, we transform it into an instance of CLIQUE, $\langle G', k' \rangle$, as follows:
 - Let V' = V, i.e., copy all of the vertices.
 - For all pairs of vertices $u, v \in V$, if $(u, v) \notin E$, add an edge (u, v) to G', i.e., E' will consist of all the edges *not* in G.
 - Set k' = k.
- Reduction in polynomial time: The reduction takes time $O(V^2)$ to create $\langle G', k' \rangle$, which is polynomial wrt the original problem instance.
- "yes" \leftrightarrow "yes"
 - "yes" for Independent-Set \rightarrow "yes" for Clique

A "yes" for INDEPENDENT-SET means that there are k vertices in G such where no edge exists between these vertices. In G' these vertices will therefore be fully connected forming a clique of size k.

– "yes" for CLIQUE \rightarrow "yes" for INDEPENDENT-SET

A "yes" for CLIQUE means there is a clique of size k in G'. In G these vertices will not have any edges between them, so they will represent an independent set.