
CS140 - Assignment 3
Due: Sunday, Sept. 18 at 11:59pm

http://www.smbc-comics.com/index.php?db=comics&id=1099

• You must work on this assignment with a partner, though it does not have to be within your
learning group. There are an odd number of people in the class right now, so I will allow one
group of three, but you need to get permission from me first.

• You must use LATEX to format your solution.

1. [8 points] Give the asymptotic bounds for each of the recurrences below. Assume that T (n)
is constant for sufficiently small n. Make your bounds as tight as possible. If you use the
master method, you must specify Θ bounds, but only need to specify O if you use another
approach.

(a) T (n) = 9T (n/3) + n2

(b) T (n) = 2T (n/2) + n3

(c) T (n) = 3T (n/2) + n log n

(d) T (n) = T (n− 2) + n

1



2. [15 points] Sorting Partially Sorted Data

(a) You are given an array of n elements to sort. The good news is that the array is already
partitioned into n/k blocks of k elements each. The elements in the first block (elements
at array indices 1 through k) are unsorted, but they are all less than the elements in the
second block (elements at array indices k + 1 through 2k), and so forth. In other words,
each of the n/k blocks is unsorted, but the elements in each block are strictly smaller
than the elements in the next block.

Prove that any comparison-based sorting algorithm that receives this kind of “partially”
sorted data has a lower bound of Ω(n log k) on its worst-case running time.

Note: It is not at all rigorous nor correct to simply combine the Ω(k log k) lower bounds
for sorting each of the n/k blocks! To see why, observe that a skeptic could rightfully
ask if there might not be a special clever algorithm that exploits the information about
the blocks to do better than we would without knowing that information. A rigorous
proof will need to follow the paradigm that we used in class to get the lower bound for
sorting in general.

(b) Briefly describe how such an array (an array of length n with n/k subsequences such
that the elements in each subsequence are all smaller than the elements in the next
subsequence) can be sorted in time O(n log k). From the first part of this problem, you
can now conclude that your algorithm is asymptotically optimal!

3. [25 points] Stock Market Problem

You’re given an array of numbers representing a stock’s prices over n days. You goal is
to identify the longest consecutive number of days during which the stock’s value does not
decrease. For example, consider the stock values below:

Day: 1 2 3 4 5 6 7 8

Value: 42 40 45 45 44 43 50 49

In this example, the length of the longest consecutive non-decreasing run is 3. This run goes
from day 2 to day 4.

(a) Briefly describe a very simple “naive” algorithm for this problem and explain why the
worst-case running time is Θ(n2).

(b) Describe a divide-and-conquer algorithm whose running time is asymptotically better
than Θ(n2). Provide pseudocode and/or a clear English description of your algorithm.
(Note that your algorithm must be a divide-and-conquer algorithm. And yes there are
non-divide-and-conquer algorithms that are very, very good!)

Hint: Like writing recursive functions, when trying to come up with a divide-and-conquer
solution, assume that your algorithm works correctly on the divided parts. Then, how
do you construct your answer to the overall solution?

(c) Analyze the running time of your algorithm: what are tight bounds on the best and
worst case behavior?

(Note that next week’s assignment will ask you to implement your divide-and-conquer algo-
rithm.)

2


