
Sequence Alignment
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss the dynamic programming paradigm
• Investigate the sequence alignment problem

Assessments
• None

Sequence Alignment

• Compute the similarity between two strings.
• For example, using the Needleman-Wunsch Similarity Score

• Total penalty = pgap + pAT

• Assume these penalties are based on biological principles

A G G G C T
A G G -- C A

Sequence Alignment

Input:
• Two strings X = x1, …, xm; and Y = y1, …, yn; over the alphabet Σ
• For example, Σ = {A, C, G, T} for genomes

• Also given a penalty value for each possible error
• For example, pgap , pAC , pAG , pAT , pCG , pCT , pGT

Output:
• Out of all possible alignments, output the one that minimizes total

error

Sequence Alignment

Input:
• Two strings X = x1, …, xm; and Y = y1, …, yn; over the alphabet Σ
• For example, Σ = {A, C, G, T} for genomes

• Also given a penalty value for each possible error
• For example, pgap , pAC , pAG , pAT , pCG , pCT , pGT

Output:
• Out of all possible alignments, output the one that minimizes total

error
How many possible alignments exist?

Example

Assume a penalty of
• 1 for each gap and
• 2 for a mismatch between symbols

What is the minimum penalty for these two strings?

A G T A C G

A C A T A G

Example

Assume a penalty of
• 1 for each gap and
• 2 for a mismatch between symbols

What is the minimum penalty for these two strings?
• 4

A -- -- G T A C G

A C A -- T A -- G

We’ll say that these sequences have a common length of L

Optimal Substructure

• Let’s zoom in on the last column of the alignment

• How many possibilities are there for the contents of the final column
of an optimal alignment?
• Case 1: xm and yn
• Case 2: xm and gap (handles case where yn is matched with something else)
• Case 3: gap and yn (handles case where xm is matched with something else)

A G G G C Xm?

A G G -- C Yn?

X has m values

Y has n values

Case 1: xm and yn (no gap)

• Let P denote the final alignment penalty after matching xm and yn
• Then the penalty of the part before the final match is

𝑃 = 𝑃!"#$% + 𝑃&'(
𝑃!"#$% = 𝑃 − 𝑃&'(

• To get an optimal alignment, we want Pfirst to be optimal.

A G G G C ... xm
A G G |gap| C … yn

X’ + gaps

Y’ + gaps

Case 2: xm and gap

• In this case we match xm with a gap
• We’ve removed one symbol from X (we’ll call it X’)
• But we still have the entire Y string

A G G G C … xm
A G G |gap| C … |gap|

X’ + gaps

Y + gaps

Case 3: gap and yn

• In this case we match yn with a gap
• We’ve removed one symbol from Y (we’ll call it Y’)
• But we still have the entire X string

A G G G C … |gap|

A G G |gap| C … yn

X + gaps

Y’ + gaps

Optimal Substructure

An optimal alignment of two strings X and Y is one of

1. An optimal alignment of X’ and Y’ with xm and yn at the end

2. An optimal alignment of X’ and Y with xm and a gap at the end

3. An optimal alignment of X and Y’ with a gap and yn at the end

What if one of X or Y is empty at this stage?

Recurrence

𝑃",* = min(
𝑃"+,,*+, + 𝑝-!,."
𝑃"+,,* + 𝑝/01
𝑃",*+, + 𝑝/01

Code and Running Time

A good practice problem

Things to consider
• What size is the dynamic programming table?
• What are the base cases?
• What can we fill the table in with at the beginning?
• How many loops do we need?
• What is the running time?

Proof

A good practice problem

Things to consider
• What kind of proof seems natural?
• What are the base cases?
• What is our inductive hypothesis?
• What reasoning do we need for the inductive step?

FUNCTION ReconstructSequence(penalties, X, Y)
i = penalties.x_length
j = penalties.y_length
alignedX = ""
alignedY = ""
WHILE i > 0 && j > 0

MATCH penalties[i][j]
IF case 1

alignedX += X[i]; i -= 1
alignedY += Y[j]; j -= 1

IF case 2
alignedX += X[i]; i -= 1
alignedY += "gap"

IF case 3
alignedX += "gap"
alignedY += Y[j]; j -= 1

fillAsNeeded(X, alignedX, Y, alignedY)

