Bellman-Ford Algorithm
For Solving the Single Source
Shortest Path Problem
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Outline

* Discuss and analyze the Bellman-Ford Algorithm

* Bellman-Ford Walk-through



Dynamic Programming

An algorithm design technique/paradigm that typically takes one of the
following forms:

1. Top-Down (memoization—cache results and use recursion)
2. Bottom-Up (tabulation—store results in a table)

Used to solve problems with the following properties:



Key Idea: leverage

The Bellman-Ford Algorithm

and

A dynamic programming solution to the
Shortest Path problem (same problem solved by Dijkstra’s)

Input:
* a weighted graph G = (V, E) where each edge has a length c_ and
* a source vertex s

Output:
* The length of the shortest path from s to all other vertices, or
* We output that we detected a negative cycle (invalid path lengths)



What is the shortest

Example 1 path from Sto T
using 0 edges?

Subproblem: consider only a subset of the possible paths.



What is the shortest

Example 1 path from Sto T
using 1 edge?




What is the shortest
Exam pIe 1 path using 2 edges?
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Example 2
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What is the shortest path with
at most 1 edge?




Example 2

Shortest path with
at most 2 edges




We didn’t gain anything by adding the edge

Example 2

3 2
00—
00

Shortest path with at most 2 edges

Shortest path with at most 3 edges




Example 2

Shortest path with 2t most 4 ecges




Example 2

Optimal Substructure

This must be shortest path fromSto C
with at most 3 edges!

If rainbow is the shortest path from S to
T using at most 4 edges, then the red
dashed line must be the shortest path

from S to C using at most 3 edges.

Shortest path with




The path from D to Cis used as part of
Exa m p | e 2 the shortest path from S to T. And as
part of the shortest path from S to C.
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Overlapping Subproblems

The path from D to Cis used as part of the Shortest path with

shortest path from Sto Tand fromDto T (and ...)



FUNCTION BellmanFord(G, start vertex)
n = G.vertices.length

edges lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]

edges lengths[0, start vertex] = ©

FOR num_edges IN [1 ..< n] | Whywon’t we need more than n-1 edges?

FOR v IN G.vertices
min_len = INFINITY

FOR (vFr‘om, V) IN G. Edges Cost to get to vFrom using i-1 edges

len = edges _lengths[num _edges - 1, vFrom] + G.edges[VvFrom, v].cost

IF len < min_len

min_len = len Cost using at most i-1 edges

edges lengths[num_edges, v] = minjedges lengths[num edges - 1, v],
Cost using at most i edges




Max Number
Of Edges
On Path
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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What does
a single cell
denote?
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)




Initialize first row

Lengths of paths from s to
all other vertices using zero
edges

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)

edges _lengths

edges lengths[0@, start _vertex] = ©

[ [INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]
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Initialize first row

Lengths of paths from s to
all other vertices using zero
edges

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)

edges _lengths

edges lengths[0@, start _vertex] = ©

[ [INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]
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FOR num_edges IN [1 ..< n]
“"FOR v IN G.vertices
*Tmin_len = INFINITY
“ “v
** +** FOR (vFrom, v) IN G.edges
* len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len

lens[num_edges, v] = min(

lens[num edges - 1, v], min_len
[num_edg ], min_len)
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num_edges=1
V=a

minW = inf
minW = 2
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices

min_len = INFINITY
.....-..F.QB.&\(Er‘om, v) IN G.edges

lens[num_edges - T, VFrom}-» c
IF len < min_laﬁ'

*

len

. *
min_len =*len

*

lens[num_ng€é, v] = min(

lens[nﬁh_edges - 1, v], min_len)




num_edges=1
V=a

minW = inf
minW = 2

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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There are not any
paths of length 1
fromstocord

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
V=S5
minW = inf

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
V=S5
minW = inf
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
V=a

minW = inf
minW = 2
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
V=a

minW = inf
minW = 2
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
v=Db

minW = inf
minW =4
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
v=>b

minW = inf
minW =4
minW =3
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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num_edges =2
V=_C

minW = inf
minW =4
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
4 (o o] (o o]
b C d



num_edges =2
v=d

minW = inf
minW =8
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 0 2 3 4 6

What is our output? 3 0 2 3 4 6
| 2 0 2 3 4 8

1 0 2 4 oo oo

0 0 oo o2 =< oo

S a b C d



What is our output?

O = N W b

FOR nu
FOR

m_edges IN [1 ..< n]

v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

o O O O

N NN
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What is our output?

Do we need the
other rows of the
table?

O = N W b

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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3 4 8
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FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

| 4 0o 2 3 4
What is our output? 3 0 9 3 4 6
Do we need the | 2 0 ’ ’ ’ °
other rows of the 1 0 2 : - .
table? L 0 - - - -

S a b C d



of Bellman-Ford Algorithm?

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges The inner two loops go through every
len = lens[num edges - 1, vFrom] + c edge once, ordered by the vertices
IF len < min_len
min_len = len

lens[num_edges, v] = min(lens[num_edges - 1, v], min_len)

O(n?) O(mn) O(n3) O(m?)



What about
negative edges?

O = N W b

FOR nu
FOR

m_edges IN [1 ..< n]

v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)
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What is the maximum
number of edges on any
real (not negative infinity)
shortest path?
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What is the maximum

number of edges on any

real (not negative infinity)
path?

Any additional edges will
increase the path length,
or otherwise must be part
of a negative cycle



Exercise



What is the shortest
path from S to B?

Initialization

C

Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?

Initialization
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None co

Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

KN ;o

None co

Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

None

incoming
edges

None oo
None oo
None oo

Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

v oo | -1 |1
S S 0 0

B S o 5

C None oo

Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?
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Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?
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Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?
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Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

S
S
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Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?

C
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9 0 O

Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?

S s e
N s
s

E 6 € 4

. [NEERSY

Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?

S
D
C S

N 0 O
A 9 w O

N -

Table is rotated when compared to previous example
(easier to fit on the slide)




What is the shortest
path from S to B?

s 0e—o
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Table is rotated when compared to previous example
(easier to fit on the slide)



What is the shortest
path from S to B?

S

Last iteration is only to detect negative cycles.

0
3
7/
4

Table is rotated when compared to previous example
(easier to fit on the slide)



Summary of Bellman-Ford

* Single-source shortest path problem (like Dijkstra’s)
* Running time is O(nm)
* Works with negative weights

* Can detect negative cycles

* Run the loop n times and if a path length goes down, then you’ve found a
negative cycle



