Bellman-Ford Algorithm
For Solving the Single Source
Shortest Path Problem

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Discuss and analyze the Bellman-Ford Algorithm

* Bellman-Ford Walk-through

Dynamic Programming

An algorithm design technique/paradigm that typically takes one of the
following forms:

1. Top-Down (memoization—cache results and use recursion)
2. Bottom-Up (tabulation—store results in a table)

Used to solve problems with the following properties:

Key Idea: leverage

The Bellman-Ford Algorithm

and

A dynamic programming solution to the
Shortest Path problem (same problem solved by Dijkstra’s)

Input:
* a weighted graph G = (V, E) where each edge has a length c_ and
* a source vertex s

Output:
* The length of the shortest path from s to all other vertices, or
* We output that we detected a negative cycle (invalid path lengths)

What is the shortest

Example 1 path from Sto T
using 0 edges?

Subproblem: consider only a subset of the possible paths.

What is the shortest

Example 1 path from Sto T
using 1 edge?

What is the shortest
Exam pIe 1 path using 2 edges?

What is the shortest What is the shortest
Exam p|e 1 path using ? path using 2 edges?
2
1

Example 2

3 2
00—
00

What is the shortest path with
at most 1 edge?

Example 2

Shortest path with
at most 2 edges

We didn’t gain anything by adding the edge

Example 2

3 2
00—
00

Shortest path with at most 2 edges

Shortest path with at most 3 edges

Example 2

Shortest path with 2t most 4 ecges

Example 2

Optimal Substructure

This must be shortest path fromSto C
with at most 3 edges!

If rainbow is the shortest path from S to
T using at most 4 edges, then the red
dashed line must be the shortest path

from S to C using at most 3 edges.

Shortest path with

The path from D to Cis used as part of
Exa m p | e 2 the shortest path from S to T. And as
part of the shortest path from S to C.

e p\@
00’

Overlapping Subproblems

The path from D to Cis used as part of the Shortest path with

shortest path from Sto Tand fromDto T (and ...)

FUNCTION BellmanFord(G, start vertex)
n = G.vertices.length

edges lengths = [[INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]

edges lengths[0, start vertex] = ©

FOR num_edges IN [1 ..< n] | Whywon’t we need more than n-1 edges?

FOR v IN G.vertices
min_len = INFINITY

FOR (vFr‘om, V) IN G. Edges Cost to get to vFrom using i-1 edges

len = edges _lengths[num _edges - 1, vFrom] + G.edges[VvFrom, v].cost

IF len < min_len

min_len = len Cost using at most i-1 edges

edges lengths[num_edges, v] = minjedges lengths[num edges - 1, v],
Cost using at most i edges

Max Number
Of Edges
On Path

4
3
2
1
0

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

b C d

\Y;
End Vertex

What does
a single cell
denote?

4
3
2
1
0

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

Initialize first row

Lengths of paths from s to
all other vertices using zero
edges

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)

edges _lengths

edges lengths[0@, start _vertex] = ©

[[INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]

3

2
1
0

Initialize first row

Lengths of paths from s to
all other vertices using zero
edges

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(
lens[num_edges - 1, v], min_len)

edges _lengths

edges lengths[0@, start _vertex] = ©

[[INFINITY FOR v IN G.vertices] FOR _ IN [© ..< n]]

3

2
1
0

‘--lllllll..
|...
|
~

*

* .

num ed ggs:}—.‘l"

“

..l.V —_ S “ “
“

minW = inf -
Nothing tS100p
over

FOR num_edges IN [1 ..< n]
“"FOR v IN G.vertices
*Tmin_len = INFINITY
“ “v
** +** FOR (vFrom, v) IN G.edges
* len = lens[num_edges - 1, vFrom] + c
IF len < min_len
min_len = len

lens[num_edges, v] = min(

lens[num edges - 1, v], min_len
[num_edg], min_len)

i anB
* --‘I‘-
“ -“‘l-
* -‘l‘-
* ‘-l‘
“ ‘---I
| |
nn®
nnt®
nu® .
pus® *
*
*
*
*
*
*
*
*
*
*
‘0
2
(o o) oo oo oo

© 44.9

4

num_edges=1
V=a

minW = inf
minW = 2

1

2

2

Ol (N W b

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices

min_len = INFINITY
.....-..F.QB.&\(Er‘om, v) IN G.edges

lens[num_edges - T, VFrom}-» c
IF len < min_laﬁ'

*

len

. *
min_len =*len

*

lens[num_ng€é, v] = min(

lens[nﬁh_edges - 1, v], min_len)

num_edges=1
V=a

minW = inf
minW = 2

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

num_edges=1
v=Db

minW = inf
minW =4

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

4
b C d

There are not any
paths of length 1
fromstocord

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

4 (o o] (o o]
b C d

num_edges =2
V=S5
minW = inf

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
3
2
1
0

4 (o o] o0
b C d

num_edges =2
V=S5
minW = inf

4
3
2
1
0

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 (o o] o0
b C d

num_edges =2
V=a

minW = inf
minW = 2

4
3
2
1
0

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 (o o] (o o]
b C d

num_edges =2
V=a

minW = inf
minW = 2

4
3
2
1
0

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 (o o] (o o]
b C d

num_edges =2
v=Db

minW = inf
minW =4

O R [(INITW b

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 (o o] (o o]
b C d

num_edges =2
v=>b

minW = inf
minW =4
minW =3

O R [(INITW b

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 (o o] (o o]
b C d

num_edges =2
V=_C

minW = inf
minW =4

O R [(INITW b

o O O

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4
4 (o o] (o o]
b C d

num_edges =2
v=d

minW = inf
minW =8

4
3
2
1
0

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

0 2
0 2
0 oo
S a

4 8
4 (o o] (o o]
b C d

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

@ min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

4 0 2 3 4 6

What is our output? 3 0 2 3 4 6
| 2 0 2 3 4 8

1 0 2 4 oo oo

0 0 oo o2 =< oo

S a b C d

What is our output?

O = N W b

FOR nu
FOR

m_edges IN [1 ..< n]

v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

o O O O

N NN

3
3
4

8

(on

4 6
8
C d

What is our output?

Do we need the
other rows of the
table?

O = N W b

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

o O O O

N NN

3 4 6
3 4 8
4 oo oo
b C d

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges

len = lens[num_edges - 1, vFrom] + ¢

IF len < min_len

min_len = len

lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

| 4 0o 2 3 4
What is our output? 3 0 9 3 4 6
Do we need the | 2 0 ’ ’ ’ °
other rows of the 1 0 2 : - .
table? L 0 - - - -

S a b C d

of Bellman-Ford Algorithm?

FOR num_edges IN [1 ..< n]
FOR v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges The inner two loops go through every
len = lens[num edges - 1, vFrom] + c edge once, ordered by the vertices
IF len < min_len
min_len = len

lens[num_edges, v] = min(lens[num_edges - 1, v], min_len)

O(n?) O(mn) O(n3) O(m?)

What about
negative edges?

O = N W b

FOR nu
FOR

m_edges IN [1 ..< n]

v IN G.vertices
min_len = INFINITY
FOR (vFrom, v) IN G.edges
len = lens[num_edges - 1, vFrom] + ¢
IF len < min_len
min_len = len
lens[num_edges, v] = min(

lens[num_edges - 1, v], min_len)

o O O O

N NN

3
3
4

8

(on

4 6
8
C d

What is the maximum
number of edges on any
real (not negative infinity)
shortest path?

10

What is the maximum

number of edges on any

real (not negative infinity)
path?

Any additional edges will
increase the path length,
or otherwise must be part
of a negative cycle

Exercise

What is the shortest
path from S to B?

Initialization

C

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

Initialization

KN -

None co

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

KN ;o

None co

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

None

incoming
edges

None oo
None oo
None oo

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

v oo | -1 |1
S S 0 0

B S o 5

C None oo

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

— S
©o 5
oo 7
None oo
“ None oo

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

Kl -
II o
oo 7
None oo oo
None o

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

s 0 &— 0
Bl 5 -~
Bl 5 -<
n None oo € oo
“ None oo &= oo

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

S
S
C S 7 € 7
C
B

ooe'_'G

oo & 1

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

C

v uvu O
O N o O
9 0 O

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

S s e
N s
s

E 6 € 4

. [NEERSY

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

S
D
C S

N 0 O
A 9 w O

N -

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

s 0e—o
= R
-
o
- [NTERSY

Table is rotated when compared to previous example
(easier to fit on the slide)

What is the shortest
path from S to B?

S

Last iteration is only to detect negative cycles.

0
3
7/
4

Table is rotated when compared to previous example
(easier to fit on the slide)

Summary of Bellman-Ford

* Single-source shortest path problem (like Dijkstra’s)
* Running time is O(nm)
* Works with negative weights

* Can detect negative cycles

* Run the loop n times and if a path length goes down, then you’ve found a
negative cycle

