Floyd-Warshall Algorithm For Solving the <u>All-Pairs</u> Shortest Path Problem

https://cs.pomona.edu/classes/cs140/

Topics and Learning Objectives

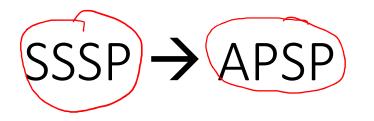
Discuss and analyze the Floyd-Warshall Algorithm

- **Exercise**
- None

All-Pairs Shortest Path Problem

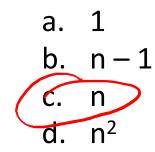
Compute the shortest path from every vertex to every other vertex

- Input: a weighted graph
- Output:
 - Shortest path from $(u \rightarrow v)$ for all values of u and v
 - Report that a negative cycle has been discovered
- Can we solve this problem with what we know already?



How do we turn a solution to the single-source shortest path (SSSP) problem into a solution for the all-pairs shortest path (APSP) problem?

- This is called a reduction!
- How many times do we need to run a SSSP procedure for APSP?



What SSSP algorithms do we know?

Running time of APSP if we **don't** allow negative edges?

 $O(n^2 \lg n)$

 $O(n^3 \lg n)$

 $O(n^2 m)$

O(n³) 🧹

O(n⁴)

- n * O(Dijkstra's Algorithm) = O(n m lg n)
- For sparse graphs:
- For dense graphs:

Running time of APSP if we do allow negative edges?

- n * O(Bellman-Ford) =
- For sparse graphs:
- For dense graphs:

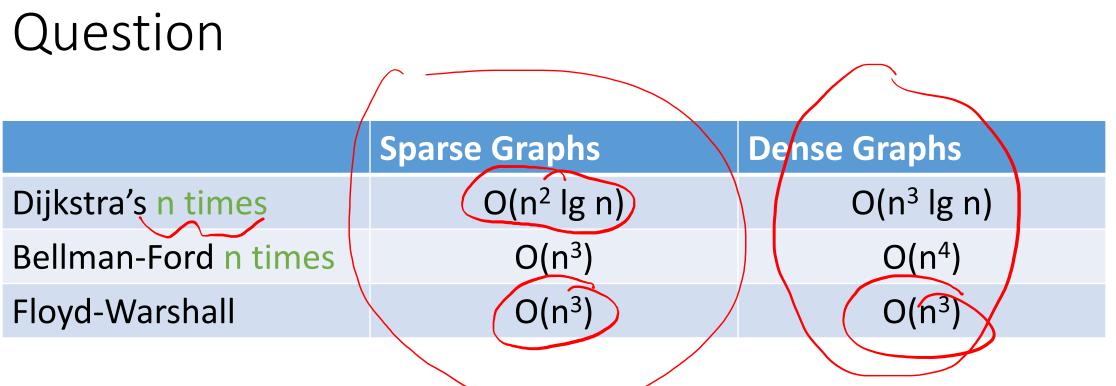
Consider APSP on dense graphs.

- How many values are we going to output?
- What is the potential length of a shortest path? n-1
- What is the lower bound on the running time of ASPS?
- It is tempting to say that the lower bound is n³
- However, this lower bound has yet to be determined
- Consider the matrix multiplication procedure developed by Strassen

 n^2

Specialized APSP Algorithm

- Although we can use Bellman-Ford and Dijkstra's algorithms, there are, in fact, specialized APSP algorithms
- The Floyd-Warshall algorithm solves the APSP problem deterministically in $O(n^3)$ on all types of graph
- It works with negative edge lengths
 Meaning that is as good as Bellman-Ford for sparse graphs,
- And much better than Bellman-Ford for dense graphs.



- What algorithm would you choose for sparse graphs?
 - Dijkstra's n times if there are no nnegative edges, Floyd-Warshall otherwise
- What algorithm would you choose for dense graphs?
 - Always Floyd-Warshall

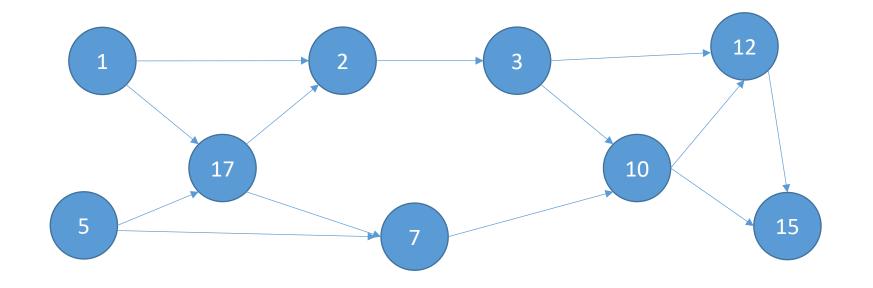
Optimal Substructure for APSP

Key concept:

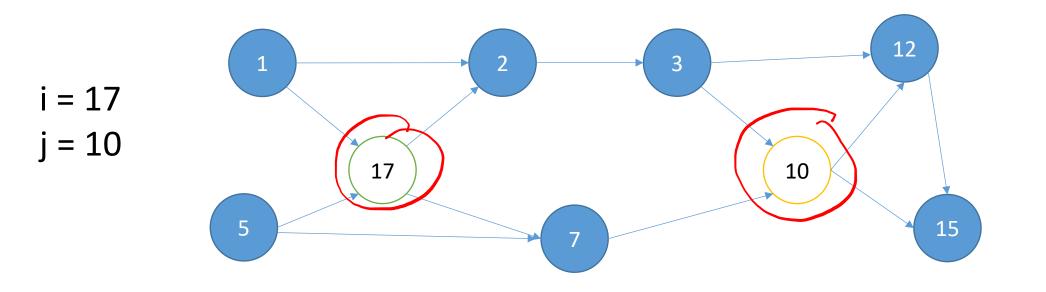
- label the vertices 1 though n (giving them an arbitrary order),
- and then introduce the notation $V^{(k)} = \{1, 2, ..., k\}$

- Assume, for now, that the graph does **not** include a **negative cycle**
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow j path with <u>internal</u> nodes from V^(k)

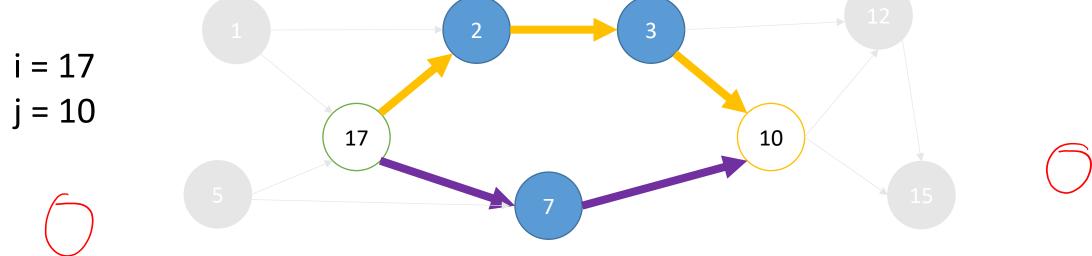
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow j path with <u>internal</u> nodes from V^(k)



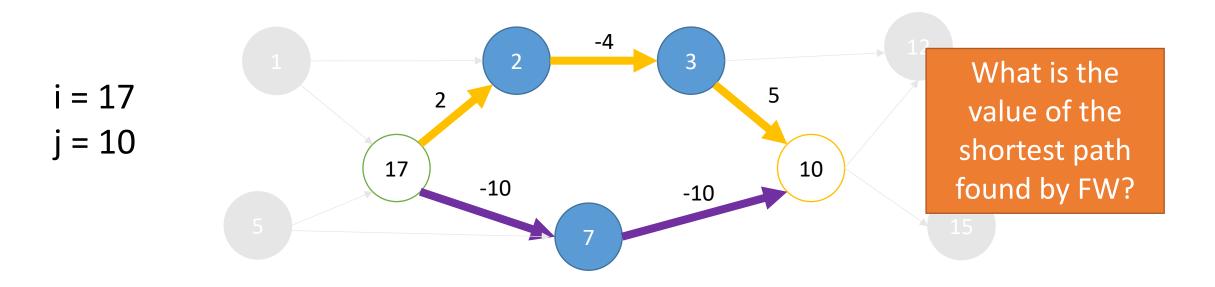
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow j path with <u>internal</u> nodes from V^(k)



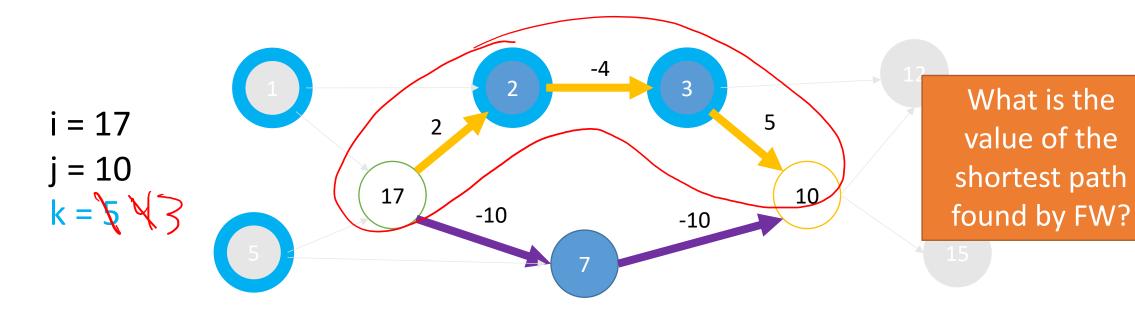
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow j path with <u>internal</u> nodes from V^(k)



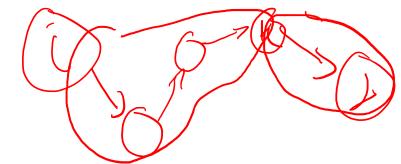
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow path with <u>internal</u> nodes from V^(k)



- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest i \rightarrow j path with <u>internal</u> nodes from V^(k)

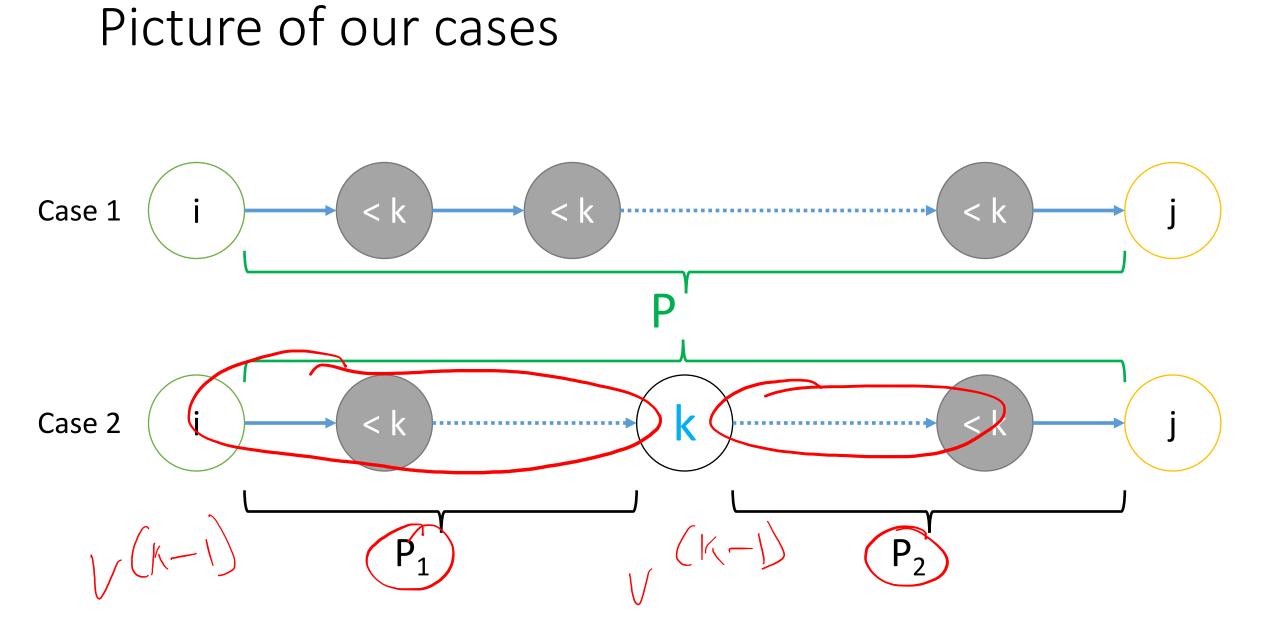


Optimal Substructure Lemma



Suppose that G has no negative cycles. Let P be the shortest (cycle-free) path i \rightarrow j, where all internal nodes come from V^(k). Then:

- <u>Case 1</u>: if k is not internal to P, then P is also a shortest path $i \rightarrow j$ with all internal nodes from $V^{(k-1)}$.
- <u>Case 2</u>: if k is internal to P, then:
 - Let $P_1 =$ the shortest i $\rightarrow k$ path with nodes from $V^{(k-1)}$ and
 - Let $P_2 =$ the shortest $k \rightarrow$ path with nodes from $V^{(k-1)}$
 - Effectively, k splits the path into two optimal subproblems



Floyd-Warshall Algorithm Base Cases

Let A = 3D array, where A(i, j, k) =the length of the shortest i \rightarrow j path with all internal nodes from {1, 2, ..., k}

• Which index (i, j, or k) do you think represents our base case?

What is the value of A[i, j, 0] when...

- i = j? 0
- there is a direct edge from i to j
- there is no edge directly connecting i to j


```
FUNCTION FloydWarshall(graph)
# Base 1 indexing for vertices labeled 1 through n
pathLengths = [n by n by (n + 1) array]
```

```
# Base case
FOR vFrom IN [1 ..= n]
   FOR vTo IN [1 ..= n]
      IF i == j
         length = 0
      ELSE IF graph.hasEdge (vFrom, vTo)
         length = graph.edges[vFrom][vTo].weight
      ELSE
         length = INFINITY
      pathLengths[vFrom][vTo][0] = length
```

Table building
continued next slide...

```
FUNCTION FloydWarshall(graph)
# Base 1 indexing for vertices labeled 1 through n
pathLengths = [n by n by (n + 1) array]
```

```
# Base case
cut from previous slide ...
# Table building
FOR k IN [1 ..= n]
   FOR vFrom IN [1 ..= n]
      FOR vTo IN [1 ..= n]
         # Case 1
         withoutK = pathLengths[vFrom][vTo][k - 1]
         # Case 2
         withKSubPathA = pathLengths[vfrom][k][k - 1]
         withKSubPathB = pathLengths[k][vTo][k - 1]
         pathLengths[vFrom][vTo][k] = min(
            withoutK,
            withKSubPathA + withKSubPathB
```

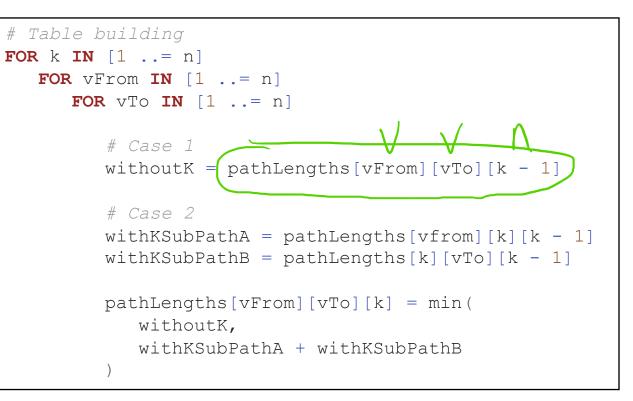
Floyd-Warshall Algorithm

Running time?

• O(n³)

Correctness?

• Substructure lemma



- Where are the final answers?
- How does it handle negative cycles?
- Reconstruction is similar to other dynamic programming problems.