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Outline

Topics and Learning Objectives
• Discuss and analyze the Floyd-Warshall Algorithm

Exercise
• None



All-Pairs Shortest Path Problem

Compute the shortest path from every vertex to every other vertex

• Input: a weighted graph
• Output:
• Shortest path from u à v for all values of u and v
• Report that a negative cycle has been discovered

• Can we solve this problem with what we know already?



SSSP à APSP

How do we turn a solution to the single-source shortest path (SSSP) 
problem into a solution for the all-pairs shortest path (APSP) problem?
• This is called a reduction!

• How many times do we need to run a SSSP procedure for APSP?

a. 1
b. n – 1
c. n
d. n2



What SSSP algorithms do we know?

Running time of APSP if we don’t allow negative edges?
• n * O(Dijkstra’s Algorithm) = O(n m lg n)
• For sparse graphs: O(n2 lg n)
• For dense graphs: O(n3 lg n)

Running time of APSP if we do allow negative edges?
• n * O(Bellman-Ford) = O(n2 m)
• For sparse graphs: O(n3)
• For dense graphs: O(n4)



Consider APSP on dense graphs.

• How many values are we going to output?

• What is the potential length of a shortest path?

• What is the lower bound on the running time of ASPS?
• It is tempting to say that the lower bound is n3

• However, this lower bound has yet to be determined
• Consider the matrix multiplication procedure developed by Strassen

n2

n -1



Specialized APSP Algorithm

• Although we can use Bellman-Ford and Dijkstra’s algorithms, there 
are, in fact, specialized APSP algorithms

• The Floyd-Warshall algorithm solves the APSP problem 
deterministically in O(n3) on all types of graph

• It works with negative edge lengths
• Meaning that is is as good as Bellman-Ford for sparse graphs,
• And much better than Bellman-Ford for dense graphs.



Question

• What algorithm would you choose for sparse graphs?
• Dijkstra’s n times if there are no nnegative edges, Floyd-Warshall otherwise

• What algorithm would you choose for dense graphs?
• Always Floyd-Warshall

Sparse Graphs Dense Graphs
Dijkstra’s n times O(n2 lg n) O(n3 lg n)
Bellman-Ford n times O(n3) O(n4)
Floyd-Warshall O(n3) O(n3)



Optimal Substructure for APSP

Key concept: 
• label the vertices 1 though n (giving them an arbitrary order), 
• and then introduce the notation V(k) = {1, 2, …, k}

Optimal Substructure Lemma:
• Assume, for now, that the graph does not include a negative cycle
• Fix a source vertex i, a destination vertex j, and a value for k
• Then let P be the shortest i à j path with internal nodes from V(k)



Example Substructure

Optimal Substructure Lemma:
• Fix a source vertex i, a destination vertex j, and a value for k
• Then let P be the shortest i à j path with internal nodes from V(k)
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Optimal Substructure Lemma

Suppose that G has no negative cycles. Let P be the shortest (cycle-free) 
path i à j , where all internal nodes come from V(k). Then:

• Case 1: if k is not internal to P, then P is also a shortest path i à j with 
all internal nodes from V(k - 1). 

• Case 2: if k is internal to P, then:
• Let P1 = the shortest iàk path with nodes from V(k - 1), and
• Let P2 = the shortest kàj path with nodes from V(k - 1)

• Effectively, k splits the path into two optimal subproblems



Picture of our cases
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Floyd-Warshall Algorithm Base Cases

Let A = 3D array, where A[i, j, k] = the length of the shortest i à j path 
with all internal nodes from {1, 2, ..., k}
• Which index (i, j, or k) do you think represents our base case?

What is the value of A[i, j, 0] when…
• i = j?
• there is a direct edge from i to j
• there is no edge directly connecting i to j

0

cij

∞



FUNCTION FloydWarshall(graph)
# Base 1 indexing for vertices labeled 1 through n
pathLengths = [n by n by (n + 1) array]

# Base case
FOR vFrom IN [1 ..= n]

FOR vTo IN [1 ..= n]

IF i == j
length = 0

ELSE IF graph.hasEdge(vFrom, vTo)
length = graph.edges[vFrom][vTo].weight

ELSE
length = INFINITY

pathLengths[vFrom][vTo][0] = length

# Table building
continued next slide…



FUNCTION FloydWarshall(graph)
# Base 1 indexing for vertices labeled 1 through n
pathLengths = [n by n by (n + 1) array]

# Base case
cut from previous slide…

# Table building
FOR k IN [1 ..= n]

FOR vFrom IN [1 ..= n]
FOR vTo IN [1 ..= n]

# Case 1
withoutK = pathLengths[vFrom][vTo][k - 1]

# Case 2
withKSubPathA = pathLengths[vfrom][k][k - 1]
withKSubPathB = pathLengths[k][vTo][k - 1]

pathLengths[vFrom][vTo][k] = min(
withoutK,
withKSubPathA + withKSubPathB

)



Floyd-Warshall Algorithm

Running time?
• O(n3)

Correctness?
• Substructure lemma

• Where are the final answers?
• How does it handle negative cycles?
• Reconstruction is similar to other dynamic programming problems.

# Table building
FOR k IN [1 ..= n]

FOR vFrom IN [1 ..= n]
FOR vTo IN [1 ..= n]

# Case 1
withoutK = pathLengths[vFrom][vTo][k - 1]

# Case 2
withKSubPathA = pathLengths[vfrom][k][k - 1]
withKSubPathB = pathLengths[k][vTo][k - 1]

pathLengths[vFrom][vTo][k] = min(
withoutK,
withKSubPathA + withKSubPathB

)


