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Outline

Topics and Learning Objectives
• Discuss clustering applications
• Cover the greedy, Max-Spacing K-Clustering Algorithm

Exercise
• Clustering practice



Clustering

Goal: given a set of n “points” we should group the points in some 
sensible manner

What are some possible sets of points?
• Webpages, images, genome fragments, people, etc.

For anyone interested in machine learning, clustering is a 
relative of unsupervised learning
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Clustering

Assumptions:
1. We are given a similarity (or dissimilarity) value for all points
2. Similarities are symmetric

𝑑 𝑝, 𝑞 is the similarity between points p and q
And 𝑑 𝑝, 𝑞 = 𝑑 𝑞, 𝑝

Examples include Euclidean distance and edit distance
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Goal: cluster ”nearby” points
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Goal: cluster ”nearby” points

6



Goal: cluster ”nearby” points
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Clustering Topics/Algorithms

• Related to data mining, statistical data analysis, machine 
learning, pattern recognition, image analysis, information 
retrieval, bioinformatics, data compression, and computer 
graphics.

• Hierarchical clustering

• Centroid clustering (k-means!)

• Distribution Clustering
• Density Clustering
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Max-Spacing K-Clustering

• We assume that we know a good value for k, where k is the number of clusters 
that we are going to form.
• k is not discovered completely automatically (pick a few values are try them out).

• Two p and q points are separated if they are in different clusters.
• Thus, points that are similar should not be separated.
• Spacing S for a set of k-clusters is given by:

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

• Given the above definition, do you think it is better to have a small or large S?
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Max-Spacing K-Clustering

• Problem statement: given a distance measure d and a number of
clusters k, compute the k-clustering with a maximum spacing S.

• Let’s solve this problem with a greedy approach.
• Greedy algorithm setup:
• Ignore k (the number of clusters) we produce until the end
• Start by putting every point into its own cluster
• How do we make spacing larger each iteration?
• What is our greedy choice? 
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
let p, q = closest pair of separated points

merge the clusters containing p and q

This is the operation that determines spacing
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Max-Spacing K-Clustering

Put each point into its own cluster

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p

q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p

q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p

q

k = 3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

p

q

k = 3
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Exercise Question 1
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Does this algorithm look familiar?

• This procedure is nearly identical to Kruskal’s Algorithm for MST
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Kruskals

Sort E by edge cost
T = empty
Each vertex into disjoint set

Repeat until only 1 set:
u, v = next cheapest edge
if Find(u) = Find(v)

Union sets

Max-Spacing k-Clustering

Sort point pairs by d
C = empty
Each point into own cluster

Repeat until only k clusters:
p, q = next closest points
if p and q are separated

Merge clusters
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Does this algorithm look familiar?

• This procedure is nearly identical to Kruskal’s Algorithm for MST

• What are the vertices?
• What are the edge costs?
• How many edges are there?
• This gives us a “complete” graph.

• Using Kruskal’s algorithm for cluster is called single link clustering.

23



Proof

Theorem: single-link clustering finds the max-spacing k-clustering of a set of 
points.
• Although we are using Kruskal’s algorithm, the objective has changed. 
• So, we cannot use the proof from before.

Exchange Argument
• Let C1, …, Ck be the k clusters computed by the greedy algorithm
• Let S be the spacing of these k clusters
• Let C1’, …, Ck’ be any other k clusters, with spacing S’

• To prove our theorem, we need to show that S’ ≤ S
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Proof of Single-Link Clustering

• Note: it would be bad to find a case where S’ > S

• Case 1 (edge case): C1’, …, Ck’ are just a renaming C1, …, Ck
• In which case, S’ = S and we are done with this case

• Case 2: We can find a pair of points a and b such that:
• a and b are in the same greedy cluster Ci
• a and b are in different clusters Ca’, Cb’
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Proof of Single-Link Clustering

We have two cases to consider:

Case 2a: in the greedy algorithm, points a and b are directly merged at 
some point

Case 2b: in the greedy algorithm, points a and b are indirectly merged 
at some point
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Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at 
some point
• How does d(a, b) relate to S?

27



Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

k = 3

S = ?
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

k = 3

S = 1

1
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

k = 3

S = 1.75

1

1.75
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

k = 3

S = 2.3

1

1.75

2.3
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Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

p, q = closest pair of separated points

merge the clusters containing p and q

𝑆 = min
!"# $%% &'($#$)'* (,,

𝑑(𝑝, 𝑞)

k = 3

S = 4.2

1

1.75

2.3

4.2
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Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at 
some point
• How does d(a, b) relate to S?

• If two points a and b are directly merged, then d(a, b) ≤ S
• Additionally, the distance between any two merged points only goes 

up (or stays the same) after each iteration
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Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at 
some point
• How does d(a, b) relate to S?

• If two points a and b are directly merged, then d(a, b) ≤ S
• Additionally, the distance between any two merged points only goes 

up (or stays the same) after each iteration

• So, we have that S’ ≤ d(a, b) ≤ S à S’ ≤ S
To prove our theorem, we need to show that S’ ≤ S
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Proof of Single-Link Clustering

We have two cases to consider:

Case 2a: in the greedy algorithm, points a and b are directly merged at 
some point

Case 2b: in the greedy algorithm, points a and b are indirectly merged 
at some point
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Proof of Single-Link Clustering

Case 2b: in the greedy algorithm, points a and b are indirectly merged 
at some point
• How does d(a, b) relate to S?
• Lines denote direct merges
• All points are in the same cluster in the end

a

a1

a2

a3

aL

b
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Proof of Single-Link Clustering

Case 2b: in the greedy algorithm, points a and b are indirectly merged 
at some point

• Let <a, a1, …, aL, b> be the path of direct merges connecting a and b

• In the non-greedy solution, since a is in Ca’ and b is in Cb’ there must 
be some consecutive pair where aj is in Ca’ and aj+1 is in Cb’

• Thus S’ ≤ d(aj, aj+1) ≤ S à S’ ≤ S

p

a1

a2

a3

aL

q

Case 2: We can find a pair of points a and b such that:
a and b are in the same greedy cluster Ci
a and b are in different clusters Ca’, Cb’

37



Proof of Single-Link Clustering

• So, we have proved that under all circumstances, S is the biggest 
possible spacing for the points
• Thus, the greedy (Kruskal’s-based) algorithm is optimal and correct

p

a1

a2

a3

aL

q
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