Minimum Spanning Iree

https://cs.pomona.edu/classes/cs140/



https://cs.pomona.edu/classes/cs140/

Outline

* Discuss spanning tree and minimum spanning trees (MSTs)
* Introduce Prim’s algorithms for MSTs
* Prove correctness of Prim’s MST Algorithm

* MIST exercise questions 1 and 2



Extra Resources

* Introduction to Algorithms, 3rd, chapter 23



Minimum Spanning Tree
Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?
* It is a fundamental graph problem,
* It has several greedy-based solutions,

* And it has many applications:
* Clustering
* Networking
* Many more



. Bernard Chazelle (1995)
G reedy SO‘ ution developed a non-greedy algorithm

that runs in O(m a(m,n)).

e Otakar Boruvka in 1926

* Vojtéch Jarnik in 1930
* Rediscovered by Robert Prim in 1957
* Rediscovered by Edsger Dijkstra in 1959

* Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:

e Canrunin O(m Ig n)

 Remember: it takes O(n + m) just to read the graph!

* There are an number of possible spanning trees



Minimum Spanning Tree

Input: a weighted, undirected graph G = (V, E)

* A similar problem can be constructed for directed graphs, and it is then
called the optimal branching problem

* Each edge e has a cost
* Costs can be negative

Output: the minimum cost tree T that all vertices
* Calculate cost as the sum of all edge costs

 What does it mean to span a graph?

* The tree T is just a subset of



Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (\, T) is connected




Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

What is a spanning tree
for this graph?

This is not the minimum
spanning tree




MST Problem Assumptions

1. The input graph is connected
* This is easy to check. How?
* Otherwise we’re looking at the minimum spanning problem

2. Edge costs are distinct
e All mentioned algorithms are correct with ties, but
* |t makes our correctness proof much easier if we assume no ties



Prim’s Algorithm (aka Jarnik’s or Dijkstra’s)

* A greedy algorithm that finds an VST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

O O

What is a good criteria 3
for finding the 4 2
minimum spanning tree?




Prim’s Algorithm

* A greedy algorithm that finds an VST for a weighted, undirected graph.

* It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

What is a good criteria

for finding the 4 2
minimum spanning tree?




FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertilices.silze

min welght, min edge = INFINITY, NONE

FOR v IN found
FOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF welght < min weight
min welght = weight
min edge = (v, vOther)

found.add (min edge[1l])

mst.add (min edge)
mst cost = mst cost + min weight

RETURN mst, mst cost



FUNCTION Prims (G, start vertex)

izltmf T} {start vertex| How does this compare
mst cost = 0 with Dijkstra’s Algorithm?

WHILE found.size != G.vertices.size

min welght, min edge = INFINITY, NONE
FOR v IN found
FFOR vOther, weight IN G.edges|[V]
IF vOther NOT IN found
IF welght < min weight
min welght = weight

min_edge = (v, vOther) Each iteration:
found.add (min edge[1l]) Extend MST in
mst.add (min edge) cheapest
mst cost = mst cost + min weight manner possible

RETURN mst, mst cost




Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T* is the minimum spanning tree

We need to define a few things before we conduct the proof



Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how
many possible cuts are there?

a. O(n)

b. O(n?)
c. O(2M)
d. O(n")




Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n?)
c. O(2")
d. O(n")




Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if

there exists a cut (A, B) with zero crossing edges. O O O

Proof A:

* Assume we have a cut with zero crossing
edges

 PickanyuinAandvinB
* There is no path from u to
* Thus the graph is not connected

Proof B:
e Assume the graph is not connected

Suppose G has no path from u to

Put all vertices reachable from u into A

Put all other vertices in B

Thus, no edges cross the cut



Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

O O
O



Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in C
that crosses the cut.




Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in C
that crosses the cut.




Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be one more edge in
that crosses the cut.

No Cycle Corollary: if e is the only edge crossing O O
some cut (A, B), then it is not in any cycle.
® O

®/\eo




Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree
2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.



Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.



Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans

FUNCTION Prims (G, start vertex)

found = {start vertex}

mst = {}

mst cost = 0

WHILE found.size != G.vertices.size

min weight, min edge = INFINITY, NONE
FOR v IN found
FOR vOther, weight IN G.edges|[Vv]
IF vOther NOT IN found
IF weight < min weight
min welight = welght
min edge = (v, vOther)
found.add (min edge[1l])
mst.add (min edge)
mst cost = mst cost + min weight
RETURN mst, mst cost



Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans



Simplitied Pseudocode for Prim’s Algorithm

1S}
empty

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not in
add e to
add v to



Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

add e to T
add v to X

with u in X and v not in X
/Cé;‘\\//"\\\

:

Assume the graph is connected. X 6

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

(oo

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

(e

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains

the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains

the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

(o3

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of
with u in X and v not in X

add e to T
add v to X

legfe @

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Simplitied Pseudocode for Prim’s Algorithm

X
-

1S}
empty

while X is not V:

1. Prim’s algorithm maintains
the invariant that
1T spans X

let e = (u, v) be the cheapest edge of

with u in X and v not in X

add e to T
add v to X

V-X




Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that = spans

2. The algorithm is guaranteed to terminate with X =V



Simplitied Pseudocode for Prim’s Algorithm

= {s} 2. The algorithm is
= empty guaranteed to terminate
with X =V

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

If the algorithm does not terminate,
add v to

then by the Empty cut Lemma the
input graph must be disconnected.




Claim 1: Prim’s outputs a spanning tree
Prim’s algorithm maintains the invariant that = spans -
The algorithm is guaranteed to terminate with =/

The set of edges, T, does not contain any cycles

w N



Simplitied Pseudocode for Prim’s Algorithm

{s} 3. The set of edges, T, does
empty not contain any cycles

while X is not V:
let e = (u, v) be the cheapest edge of
with u in and v not 1n
add e to

By the No cycle corollary, the
add v to Y

addition of e cannot create a cycle
(it is the only edge to cross the cut).




Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans

2. The algorithm is guaranteed to terminate with X =V
* Could anything go wrong here?

e Under what circumstances cannot we not find an edge to
cross the cut (X, V- X)?

* By the Empty cut Lemma the input graph must be disconnected
* However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
e Consider any iteration and our sets X and
e Suppose we add an edge e to
* The edge e must be the first edge to cross (X, V - X) being added to
* By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)




Claim 1: Prim’s outputs a sp~

1. Prim’s algorithm maintains the invarian’

2. The algorithm is guaranteed to te’
e Could anyth' ~ng here?

* Under wh- “nNo’
cross the

* BytheEm,
* However, we

O

sconnected
buld be used as inputs

3. The algorithmis g cree (no cycles)
* Consider any iteratior.
e Suppose we add an edg
* The edge e must be the t,

* By the No cycle corollary, t

(X, V-X) beingadded to T
e cannot create a cycle (only edge to cross the cut)




Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper
definition
* Consider an edge e of G

* Suppose you can find a cut (A, B) such that e is the cheapest edge of
G that crosses (A, B)

e Cut Property: e belongs to the MST of G 0 ; °

4 2

© O

 Assume that this is true! We’ll prove it later




Claim 2: Prim’s outputs the MST

* Claim: the Cut Property implies that Prim’s algorithm outputs the MST




Simplitied Pseudocode for Prim’s Algorithm

= {s} Claim: the Cut Property implies
= empty that Prim’s algorithm outputs
the MST

while X is not V:
let e = (u, v) be the cheapest edge of
with u 1n and v not 1in

add e to
Cut Property: if e is the cheapest

add v to edge that crosses the cut (X, V —X)
then it must be in the MST.




Claim 2: Prim’s outputs the MST

* Claim: the Cut Property implies that Prim’s algorithm outputs the MST

* Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:
* The tree T is a subset of the MST
* After termination, we are guaranteed that T is a spanning tree

* Given the cut property, we are also now guaranteed that T is minimal
spanning tree



Claim 2: Prim’s outputs the M

am outputs the MST
. vVia the cut property

e Claim: the Cut Property implies the’

* Key point: every edgeein T is e

At any giver
* The tree T is
e After terminatic «that T is a spanning tree

* Given the cut prop now guaranteed that T is minimal

spanning tree



Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

_1. That Prim’s algorithm creates a spanning tree

2. And that T* is the minimum spanning tree

* Need to prove the cut property!



Proof of the Cut Property

Assume distinct edge costs

* Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V — X)
then it must be in the MST

We are going to prove this using exchange argument contradiction




Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a
cut (X, V-X), but e is not in the MST

* What are we going to exchange?

ldea: exchange e with another edge in T* to make the cost of T* even
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?



Proof of the Cut Property

The edge e is the cheapest to cross (X, V-X)
MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected.
Let’s call this other edge f

Let’s try to exchange e and f to get a spanning tree that is cheaper than T*




Proof of the Cut Property

Is T* U {e}—{f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe




Proof of the Cut Property

Is T* U {e}—{f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe




Proof of the Cut Property

Is T* U {e}—{f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe

e\




Proof of the Cut Property

Is T* U {e}—{f} a spanning tree of G?

Yes No Only if e is the cheapest edge Maybe




Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges vyields a valid spanning tree

Solid green lines are those that are currently part of T*
Rainbow lines are other edges




Proof of the Cut Property

Hope: that we can always find a suitable edge « so that exchanging
edges vyields a valid spanning tree

Solid green lines are those that are currently part of T*




Proof of the Cut Property

Add the edge €.

What does addmg e do?| Atree will always have n-1 edges It creates a cycle that crosses the cut!

Which one of these edges can we exchange with e?
Solid green lines are those that are currently part of T*




Proof of the Cut Property

e Let C be the cycle created in T* by adding the edge e
* Find all edges that cross (X, V-X)
* By the double-crossing Lemma, there must be an edge « that crosses (X, V-X)




Proof of the Cut Property

The exchange argument was easier for greedy scheduling

eletT= T* U {e} — { } since every exchange resulted in a valid schedule




Proof of the Cut Property

*letT= T*U{e}-{}

f
L 1\ e |




Proof of the Cut Property

sletT= T*U{e}~{=)
* T is also a spanning tree
* Since c. < c. Tis a cheaper spanning tree than T* (CONTRADICTION)




Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree
2. And that T* is the minimum spanning tree

* Need t




What is the running time of Prim’s?

Can we do better
than O(mn)?

1S}
empty

Can easily get to
O(m Ig n) using a heap
(or faster with a
Fibonacci Heap)

while is not V: | O(n) for this while loop
let e = (u, v) be the cheapest edge of
with u in and v not 1n

add e to O(m) to find cheapest edge
add v to that crosses the cut (X, V-X)



