
Minimum Spanning Tree
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss spanning tree and minimum spanning trees (MSTs)
• Introduce Prim’s algorithms for MSTs
• Prove correctness of Prim’s MST Algorithm

Exercise
• MST exercise questions 1 and 2

Extra Resources

• Introduction to Algorithms, 3rd, chapter 23

Minimum Spanning Tree

Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?
• It is a fundamental graph problem,
• It has several greedy-based solutions,
• And it has many applications:
• Clustering
• Networking
• Many more

Greedy Solution

• Otakar Borůvka in 1926
• Vojtěch Jarník in 1930

• Rediscovered by Robert Prim in 1957
• Rediscovered by Edsger Dijkstra in 1959

• Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:
• Can run in O(m lg n)
• Remember: it takes O(n + m) just to read the graph!
• There are an exponential number of possible spanning trees

Bernard Chazelle (1995)
developed a non-greedy algorithm

that runs in O(m α(m,n)).

Minimum Spanning Tree

Input: a weighted, undirected graph G = (V, E)
• A similar problem can be constructed for directed graphs, and it is then

called the optimal branching problem
• Each edge e has a cost ce
• Costs can be negative

Output: the minimum cost tree T that spans all vertices
• Calculate cost as the sum of all edge costs
• What does it mean to span a graph?
• The tree T is just a subset of E

Spanning Tree Properties

1. The spanning tree T does not have any cycles
2. The subgraph (V, T) is connected

A B

DC

1

3
24

5

What is a spanning tree
for this graph?

Spanning Tree Properties

1. The spanning tree T does not have any cycles
2. The subgraph (V, T) is connected

A B

DC

1

4
What is a spanning tree

for this graph?

5
This is not the minimum

spanning tree

Our MST Problem Assumptions

1. The input graph is connected
• This is easy to check. How?
• Otherwise we’re looking at the minimum spanning forest problem

2. Edge costs are distinct
• All mentioned algorithms are correct with ties, but
• It makes our correctness proof much easier if we assume no ties

Prim’s Algorithm (aka Jarník’s or Dijkstra’s)

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

A B

DC

1

3
24

5

What is the minimum
spanning tree
for this graph?

What is a good criteria
for finding the

minimum spanning tree?

Prim’s Algorithm

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

A B

DC

1

24

What is the minimum
spanning tree
for this graph?

What is a good criteria
for finding the

minimum spanning tree?

FUNCTION Prims(G, start_vertex)
found = {start_vertex}
mst = {}
mst_cost = 0

WHILE found.size != G.vertices.size

min_weight, min_edge = INFINITY, NONE
FOR v IN found

FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found

IF weight < min_weight
min_weight = weight
min_edge = (v, vOther)

found.add(min_edge[1])
mst.add(min_edge)
mst_cost = mst_cost + min_weight

RETURN mst, mst_cost

How does this compare
with Dijkstra’s Algorithm?

Each iteration:
Extend MST in

cheapest
manner possible

FUNCTION Prims(G, start_vertex)
found = {start_vertex}
mst = {}
mst_cost = 0

WHILE found.size != G.vertices.size

min_weight, min_edge = INFINITY, NONE
FOR v IN found

FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found

IF weight < min_weight
min_weight = weight
min_edge = (v, vOther)

found.add(min_edge[1])
mst.add(min_edge)
mst_cost = mst_cost + min_weight

RETURN mst, mst_cost

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

We need to define a few things before we conduct the proof

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n)
d. O(nn)

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

found V - found

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n)
d. O(nn)

Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if
there exists a cut (A, B) with zero crossing edges.

Proof A:
• Assume we have a cut with zero crossing

edges
• Pick any u in A and v in B
• There is no path from u to v
• Thus the graph is not connected

Proof B:
• Assume the graph is not connected
• Suppose G has no path from u to v
• Put all vertices reachable from u into A
• Put all other vertices in B
• Thus, no edges cross the cut

u
A

v

B

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

No Cycle Corollary: if e is the only edge crossing
some cut (A, B), then it is not in any cycle.

A B

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans found
FUNCTION Prims(G, start_vertex)

found = {start_vertex}
mst = {}
mst_cost = 0
WHILE found.size != G.vertices.size

min_weight, min_edge = INFINITY, NONE
FOR v IN found

FOR vOther, weight IN G.edges[v]
IF vOther NOT IN found

IF weight < min_weight
min_weight = weight
min_edge = (v, vOther)

found.add(min_edge[1])
mst.add(min_edge)
mst_cost = mst_cost + min_weight

RETURN mst, mst_cost

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

v
u

Assume the graph is connected.

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

v

u

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S v

X V-X

u

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S v

X V-X

u

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

v

u

X V-X

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

v

u

X V-X

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

vu

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

vu

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S u

X V-X

v

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S u

X V-X

v

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

u v

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

u v

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

X V-X

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X
2. The algorithm is guaranteed to terminate with X = V

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

2. The algorithm is
guaranteed to terminate
with X = V

If the algorithm does not terminate,
then by the Empty cut Lemma the
input graph must be disconnected.

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X
2. The algorithm is guaranteed to terminate with X = V
3. The set of edges, T, does not contain any cycles

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

3. The set of edges, T, does
not contain any cycles

By the No cycle corollary, the
addition of e cannot create a cycle

(it is the only edge to cross the cut).

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)

Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper
definition
• Consider an edge e of G
• Suppose you can find a cut (A, B) such that e is the cheapest edge of

G that crosses (A, B)
• Cut Property: e belongs to the MST of G

• Assume that this is true! We’ll prove it later

A B

DC

1

3
24

5

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of G

with u in X and v not in X
add e to T
add v to X

Claim: the Cut Property implies
that Prim’s algorithm outputs
the MST

Cut Property: if e is the cheapest
edge that crosses the cut (X, V – X)

then it must be in the MST.

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST
• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:
• The tree T is a subset of the MST
• After termination, we are guaranteed that T is a spanning tree
• Given the cut property, we are also now guaranteed that T is minimal

spanning tree

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST
• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:
• The tree T is a subset of the MST
• After termination, we are guaranteed that T is a spanning tree
• Given the cut property, we are also now guaranteed that T is minimal

spanning tree

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

* Need to prove the cut property!

Proof of the Cut Property

Assume distinct edge costs
• Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V – X)
then it must be in the MST

We are going to prove this using exchange argument contradiction

Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a
cut (X, V-X), but e is not in the MST T*
• What are we going to exchange?

Idea: exchange e with another edge in T* to make the cost of T* even
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?

Proof of the Cut Property

• The edge e is the cheapest to cross (X, V-X)

• MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected.

• Let’s call this other edge f
• Let’s try to exchange e and f to get a spanning tree that is cheaper than T*

e

X V-X

f

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

X V-X

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e
f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e
f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e
f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*
Rainbow lines are other edges

Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*

Proof of the Cut Property

Add the edge e.
What does adding e do?
Which one of these edges can we exchange with e?

e
f

g
X V-X

Solid green lines are those that are currently part of T*

A tree will always have n-1 edges It creates a cycle that crosses the cut!

Proof of the Cut Property

• Let C be the cycle created in T* by adding the edge e
• Find all edges that cross (X, V-X)
• By the double-crossing Lemma, there must be an edge e’ that crosses (X, V-X)

e
f

g
X V-X

C

e'

Proof of the Cut Property

• Let T = T* U {e} – {e’}

e
f

X V-Xe'

Exchange
The exchange argument was easier for greedy scheduling
since every exchange resulted in a valid schedule

Proof of the Cut Property

• Let T = T* U {e} – {e’}

e
f

X V-X

Exchange

Proof of the Cut Property

• Let T = T* U {e} – {e’}
• T is also a spanning tree
• Since ce < ce’ T is a cheaper spanning tree than T* (CONTRADICTION)

e
f

X V-X

Exchange

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:
1. That Prim’s algorithm creates a spanning tree T*
2. And that T* is the minimum spanning tree

* Need to prove the cut property!

What is the running time of Prim’s?

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:
let e = (u, v) be the cheapest edge of E

with u in X and v not in X
add e to T
add v to X

O(n) for this while loop

O(m) to find cheapest edge
that crosses the cut (X, V-X)

Can we do better
than O(mn)?

Can easily get to
O(m lg n) using a heap

(or faster with a
Fibonacci Heap)

