
Universal Hashing
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:
• Insert
• Delete
• Look-up

Guaranteed constant running time for those operations if:
1. If the hash table is properly implemented, and
2. The data is non-pathological.

O(1) What are they
not good for?

Hash Table Load

α ≔
𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑎𝑠ℎ 𝑡𝑎𝑏𝑙𝑒

𝑜𝑓 𝑏𝑢𝑐𝑘𝑒𝑡𝑠

• What is the maximum possible α for separate chaining?

• What is the maximum possible α for open addressing?

Hash Table Load

α ≔
𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑎𝑠ℎ 𝑡𝑎𝑏𝑙𝑒

𝑜𝑓 𝑏𝑢𝑐𝑘𝑒𝑡𝑠

1. α = O(1) is necessary to ensure that hash table operations happen
in constant time

2. For open addressing, you typically need α ≪ 1

• Thus, for good hash table performance you must control the load
• How do you control the load?

0.75 is rule of thumb

Pathological Data Sets

• We want our hash functions to “spread-out” the data
(i.e., minimize collisions)

• Unfortunately, no perfect hash function exists (it’s impossible)

• You can create a pathological data set for any hash function

Pathological Data Sets

Fix (set) the hash function h(x) à {0, 1, …, n-1},
where n is the number of buckets in the hash table and n << |U|

With the pigeonhole principle, there must exist a bucket i,
such that at least |U|/n elements of U hash to i under h

1

2
3

365

…

abcdaaaaaaaaaaaaaaaaaaw

U

Purposefully select only the elements
that map to the same bucket.

Pathological Data Set Example

• We want to store student student ID numbers in a hash table.

• We will store about 30 students worth of data

• Let’s use a hash table with 87 buckets

• Let’s use the final three numbers as the hash

s = 30
n = 87

def hash_fcn(id_number):
return id_number % n

id_numbers = [randint(1000000, 9999999) for _ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash_values)))

id_numbers_pathological = [round(num, -2) for num in id_numbers]
hash_values_pathological = map(hash_fcn, id_numbers_pathological)
print('Number of unique student IDs:', len(set(id_numbers_pathological)))
print('Number of unique hash values:', len(set(hash_values_pathological)))

Output:
Number of unique student IDs: 30
Number of unique hash values: 28

Number of unique student IDs: 30
Number of unique hash values: 1

Real World Pathological Data

• Denial of service attack
• A study in 2003 found that they could interrupt the service of any

server with the following attributes:

1. The server used an open-source hash table
2. The hash table uses an easy-to-reverse-engineer hash function

• How does reverse engineering the hash function help an attacker?

Solutions to Pathological Data

Use a cryptographic hash function
• Infeasible to create pathological data for such a function

(but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)
1. Create a family of hash functions
2. Randomly pick one at runtime

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, …, n-1}

The family H is universal if and only if for all x, y in U

Pr(h(x) = h(y)) ≤ 1/n

where h is chosen uniformly at random from H

Basically, the hash functions don’t all have the same flaw where they
map a set of inputs to the same bucket.

Probability of a collision

Example: Hashing IP Addresses

• What is U? And how big is U?
• U includes all IP addresses, which we’ll denote as 4-tuples

example: X = (x1, x2, x3, x4) where xi is in [0, 255]
• Let n = some prime number that is near a multiple of the number of

objects we expect to store
example: |S| = 500, we set n = 997
• Let H be our set of hash functions

example: h(x) = A dot X mod n = (a1x1 + a2x2 + a3x3 + a4x4) mod n
where A = (a1, a2, a3, a4) and ai is in [0, n-1]
H includes all combinations the coefficients in A

|U| = 232 = 2564

=
4,294,967,296

|H| = n4

=
988 billion

n = 997

def ip_hash_fcn(X, A):
return sum([x * a for x, a in zip(X, A)]) % n

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]

print("IP address :", ".".join(map(str, ip_address)))
print("Hash coefficients :", hash_coeff)
print("Hash value :", ip_hash_fcn(ip_address, hash_coeff))

IP address : 227.75.113.191

Hash coefficients : [394, 429, 328, 78]

Hash value : 97

x1 x2 x3 x4

a1 a2 a3 a4

Example: Hashing IP Addresses

Theorem: the family H is universal
h(x) = A dot X mod n = (a1x1 + a2x2 + a3x3 + a4x4) mod n
where A = (a1, a2, a3, a4) and ai is in [0, n-1]
H includes all combinations the coefficients in A

• Let H be a set of hash functions mapping U to {0, 1, …, n-1}
• The family H is universal if and only if for all x, y in U
• Pr(h(x) = h(y)) ≤ 1/n
• where h is chosen uniformly at random from H

𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑚𝑎𝑝 𝑥 𝑎𝑛𝑑 𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

≤
1
𝑛

Hashing IP Addresses Proof

• Consider two distinct IP addresses X and Y
• Assume that x4 ≠ y4 (they might differ in all parts)
• The same argument will hold regardless of which part of the tuple we consider

• Based on our choice of hi, what is the probability of a collision?
• Or what fraction of his cause a collision? Pr[h(X) = h(Y)]

• Where hi is any of the hash function from H

• We want to show that ≤ 1/n of the billions of hash functions have a
collision for X and Y

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤ !
"

Hash functions are selected from the hash family by randomly generating four
values for A

ℎ 𝑋 = ℎ 𝑌

𝐴 ⋅ 𝑋 𝑚𝑜𝑑 𝑛 = 𝐴 ⋅ 𝑌 𝑚𝑜𝑑 𝑛

𝑎!𝑥! + 𝑎"𝑥" + 𝑎#𝑥# + 𝑎$𝑥$ 𝑚𝑜𝑑 𝑛 = 𝑎!𝑦! + 𝑎"𝑦" + 𝑎#𝑦# + 𝑎$𝑦$ 𝑚𝑜𝑑 𝑛

0 = 𝑎! 𝑦! − 𝑥! + 𝑎" 𝑦" − 𝑥" + 𝑎# 𝑦# − 𝑥# + 𝑎$ 𝑦$ − 𝑥$ 𝑚𝑜𝑑 𝑛

Collision between objects X and Y

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤ !
"

Hash functions are selected from the hash family by randomly generating four
values for A

0 = 𝑎! 𝑦! − 𝑥! + 𝑎" 𝑦" − 𝑥" + 𝑎# 𝑦# − 𝑥# + 𝑎$ 𝑦$ − 𝑥$ 𝑚𝑜𝑑 𝑛

Something must be different between X and Y. Let’s assume that x4 ≠y4

𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛 = 𝑎! 𝑦! − 𝑥! + 𝑎" 𝑦" − 𝑥" + 𝑎# 𝑦# − 𝑥# 𝑚𝑜𝑑 𝑛

From here we are going to fix our choices of a1, a2, and a3 and let a4 be a random
variable

We want to show that for any value of a4 we have a !' chance of a collision.

Assume n is prime.Fixed, non-zero value

Principle of Deferred Decisions

Theorem: for any possible hash function, the probability of a collision between objects X and Y is ≤ !
"

Something must be different between X and Y. Let’s assume that x4 ≠y4

𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛 = 𝑎! 𝑦! − 𝑥! + 𝑎" 𝑦" − 𝑥" + 𝑎# 𝑦# − 𝑥# 𝑚𝑜𝑑 𝑛

From here we are going to fix our choices of a1, a2, and a3 and let a4 be a random
variable

We want to show that for any value of a4 we have a !' chance of a collision.

How many choices of a4 satisfy the above equation?

• Our RHS is fixed! It is just some number in [0,	n-1]	because X, Y, and a1, a2, a3 are fixed
• If n is a prime number, then the LHS is equally likely to be any number from [0,	n-1]

• This claim requires some number theory to properly prove

Thus, based on our choice for a4, we have that Pr(h(X)	=	h(Y))	=	1/n

Assume n is prime.Fixed, non-zero value

Principle of Deferred Decisions

Unique multiplicative

Prime number for n

𝑎$ 𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛
0
1
2
3
4
5
6

n = 7, x4 = 3, y4 = 1

What do we want in
the second column?

X = (x1, x2, x3, x4) where xi is in [0, 255]
A = (a1, a2, a3, a4) and ai is in [0, n-1]

|S| = 500
n = 997

h(x) = 𝐴 ⋅ 𝑋 𝑚𝑜𝑑 𝑛
And H includes all combinations for the coefficients in A0

2
4
6
1
3
5

Prime number for n

𝑎$ 𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛
0
1
2
3
4
5
6

𝑎$ 𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛
0
1
2
3
4
5
6

n = 7, x4 = 3, y4 = 1 n = 7, x4 = 4, y4 = 1

0
2
4
6
1
3
5

0
3
6
2
5
1
4

Non-Prime number for n

𝑎$ 𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛
0
1
2
3
4
5
6
7

𝑎$ 𝑎$ 𝑥$ − 𝑦$ 𝑚𝑜𝑑 𝑛
0
1
2
3
4
5
6
7

n = 8, x4 = 3, y4 = 1 n = 8, x4 = 4, y4 = 1

0
2
4
6
0
2
4
6

0
3
6
1
4
7
2
5

x4-y4 shares factors with n

Summary

• We cannot create a hash function that prevents creation of a
pathological dataset

• As long as the hash function is known, a pathological dataset can be
created

• We can create families of hash functions that make it infeasible to
guess which hash function is in use

