
Red-Black Trees
(A Balanced BST)

https://cs.pomona.edu/classes/cs140/
Some notes taken from

http://www.geeksforgeeks.org/

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives
• Discuss tree balancing (rotations, insertions, deletions)
• Prove the balancing characteristic of red-black trees
• Discuss the running time of red-black tree operations

Assessments
• Red-black tree activity



Extra Resources

• Introduction to Algorithms, 3rd, chapter 13

• https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


Implementations

Althought Red-Black trees are not the most modern choice, they do 
appear in

• Java: TreeMap<K,V>

• C++: std::map

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://en.cppreference.com/w/cpp/container/map


Balanced Binary Search Trees

• Why is balancing important?
• What is the worst case for a binary tree?

• Balanced tree: the height of a balanced tree stays O(lg n) after 
insertions and deletions

• Many different types of balanced search trees:
• AVL Tree, Splay Tree, B Tree, Red-Black Tree



Red-Black Trees Invariants

1. Each node must be labeled either red or black

2. The root must be labeled black

3. The tree cannot have two red nodes in a row (for any red node its 
parent, left, and right must be black)

4. Every root-NULL path must include the same number of black 
nodes

Can a Red-Black tree of any height have only black nodes?



Red-Black Trees

Can a “chain” be a red-black tree?
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1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes

Null

Null

Null Null



Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes
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Color this as a Red-Black Tree



Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
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Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes
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We could also move the black color down one level



Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes
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Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes
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Color this as a Red-Black Tree



Red-Black Trees

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes

5

7

6

3



How did Red-Black Trees get their name?



Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg 𝑛 + 1 = 𝑂(lg 𝑛)

• Observation: if every root-NULL path has ≥ k nodes, then the tree 
includes a perfectly balanced top portion with k levels

k = 3k = 2
What is k? What is k?



Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree 
includes a perfectly balanced top portion with k levels

k = 3k = 2
What is k? What is k?



Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree 
includes a perfectly balanced top portion with k levels

What is the 
minimum number of 
nodes (n) in the tree 

based on k?

k n

Exercise question 1



Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree 
includes a perfectly balanced top portion with k levels

What is the 
minimum number of 
nodes (n) in the tree 

based on k?

k n

1 1

2



Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree 
includes a perfectly balanced top portion with k levels

What is the 
minimum number of 
nodes (n) in the tree 

based on k?

k n

1 1

2 3
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Red-Black Tree Height

• Claim: every Red-Black tree has a 
𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL 
path has ≥ k nodes, then the tree 
includes a perfectly balanced top 
portion with k levels

k = 3

What is the 
minimum number of 
nodes (n) in the tree 

based on k?

k = 4



Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k
nodes, then the tree includes a perfectly 
balanced top portion with k levels

2k - 1 was the minimum number of nodes



Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k
nodes, then the tree includes a perfectly 
balanced top portion with k levels

At most k black nodes

At most lg(n + 1) black nodes



Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k 
nodes, then the tree includes a perfectly 
balanced top portion with k levels

At most k black nodes

At most lg(n + 1) black nodes

How many red nodes 
on any root-Null path?



Red-Black Tree Height

• Thus: in a Red-Black tree with n nodes, 
there is a root-NULL path with at most
lg (n + 1) black nodes

• By invariant (4): every root-NULL path 
has ≤ lg 𝑛 + 1 black nodes

• By invariant (3): every root-NULL path 
has ≤ lg 𝑛 + 1 red nodes

• Thus, a total of ≤ 2lg 𝑛 + 1 nodes on 
every root-NULL path

1. Each node must be labeled 
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right 
must be black)

4. Every root-NULL path must 
include the same number of 
black nodes



Red-Black Trees

• If our tree can be colored as a Red-Black tree, then every root-NULL path 
has ≤ 2lg 𝑛 + 1 nodes total

• The longest path will dictate the height of the tree

• So, height of the tree is at most 2lg 𝑛 + 1

• A tree cannot contain a chain of three nodes

• Thus, the height of the tree is O(lg n)
• Why is this important?

lg(n+1) = lg n + lg(1 + 1/n) = lg n + C



Draw a Worst-Case (most lopsided) Red-Black Tree with a 
minimum of 3 black nodes on every root-NULL path

Exercise question 2



Red-Black Trees, Inserting a Node

1. Insert the new node

2. Color it red

3. Fix colors to enforce Red-Black Tree invariants
1. This is a recursive process



Red-Black Trees, Inserting a Node

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the 

grandparent to red
III. Go to step (2) and treat grandparent as new 

node

G

P A

N

Why?

Why?

Parent

Grandparent

Aunt/Uncle

Move the black color down

New Node

“Aunt” is usually called “Uncle”



Red-Black Trees, Inserting a Node

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the 

grandparent to red
III. Go to step (2) and treat grandparent as new 

node

G
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Why?

Why?
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Move the black color down
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Red-Black Trees, Inserting a Node

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red
b) If aunt is black

I. Put the new node, its parent, and the 
grandparent “in order” with the middle 
node as the root

II. We have four possibilities for the current 
positions of N, P, and G 

G

P A

N

G

P A

N

G

A P

N

G

A P

N

Left-Left Left-Right

Right-Right Right-Left



Red-Black Trees, Inserting a Node: Left-Left

1. Right rotate around the 
grandparent

G

P A

N

Left-Left



Tree Rotations: Right

x

y

b

c

a

z



Tree Rotations: Right
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Tree Rotations: Right
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Tree Rotations: Left
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Tree Rotations: Left
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Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the 
grandparent

G

P A

PR AL ARN

Left-Left

NL NR



Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the 
grandparent

2. Swap the colors of the 
grandparent and the parent

G

P

A
PR

AL AR

N

Left-Left

NL NR



Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the 
grandparent

2. Swap the colors of the 
grandparent and the parent

G

P

A
PR

AL AR

N

Left-Left

NL NR
G

P A

1 2 3N

Original



Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

G

P A

AL ARPL
N

Left-Right

NL NR



Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the 
grandparent

G

P

A

AL AR

PL

N

Left-Right

NL

NR



Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the 
grandparent

3. Swap the colors of the 
grandparent and the new 
node

GP

A

AL AR

PL

N

Left-Right

NL NR



Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the 
grandparent

3. Swap the colors of the 
grandparent and the new 
node

GP

A

AL AR

PL

N

Left-Right

NL NR



Red-Black Trees, Inserting a Node

• What about the Right-Right and Right-Left options?
• They are the inverse of the cases we’ve just covered.
• What are the running times of these procedures?
• Inserting the new node?
• Recoloring?
• Restructuring?

• We’re not going to cover deletion, but what are your thoughts?
• Operation? (http://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/)
• Running time?

http://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/


FUNCTION RBTreeInsert(tree, new_node)
# Search for position of new_node
parent = NONE
current_node = tree.root
WHILE current_node != NONE

parent = current_node
IF new_node.key < current_node.key

current_node = current_node.left
ELSE

current_node = current_node.right
new_node.parent = parent
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FUNCTION RBTreeInsert(tree, new_node)
# Search for position of new_node
…

# Insert new_node as root or left/right child
IF parent == NONE

tree.root = new_node
ELSE IF new_node.key < parent.key

parent.left = new_node
ELSE

parent.right = new_node
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FUNCTION RBTreeInsert(tree, new_node)
# Search for position of new_node
…

# Insert new_node as root or left/right child
…

# Initialize the new_node
new_node.left = NONE
new_node.right = NONE
new_node.color = RED

RBTreeFixColors(tree, new_node)
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FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

# Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
IF aunt.color == RED

node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node = node.parent.parent
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FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

# Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
IF aunt.color == RED

…
ELSE
IF node == node.parent.right

node = node.parent
LeftRotate(tree, node)

node.parent.color = BLACK
node.parent.parent.color = RED
RightRotate(tree, node.parent.parent)
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FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

# Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
…

ELSE
aunt = node.parent.parent.left
IF aunt.color == RED

node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node = node.parent.parent
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FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

# Look for aunt/uncle node
…
ELSE

aunt = node.parent.parent.left
…
ELSE

IF node == node.parent.left
node = node.parent
RightRotate(tree, node)

node.parent.color = BLACK
node.parent.parent.color = RED
LeftRotate(tree, node.parent.parent)
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FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

# Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
…

ELSE
aunt = node.parent.parent.left
…

tree.root.color = BLACK
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Is this a valid BST?
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Is this a valid BST?
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Is this a valid R-B Tree?
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Is this a valid R-B Tree?



25

20 30

352810

158

22

Is this the only valid coloring?
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Is this the only valid coloring?
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Is this the only valid coloring?
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Insert: 9

Exercise question 3

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red
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Insert: 9

Aunt

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the 

grandparent to red
III. Go to step (2) and treat grandparent as new 

node
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Insert: 9 Aunt

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the 

grandparent to red
III. Go to step (2) and treat grandparent as 

new node
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Insert: 9 Check the Aunt

1. Insert the new node 
(always insert as a leaf)

2. If the inserted node is the root, then 
color it black, otherwise color it red

3. If the new node is not root and its 
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is black and left-left

a) Right rotate around the grandparent
b) Swap the colors of the grandparent and the 

parent
c) Go to step (2) and treat grandparent as new 

node

Left-left
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Recolor
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Valid R-B Tree?
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BST Summary

• Most BST operations take O(height) time.
• With an unbalanced tree this could be as bad as O(n)
• We want to ensure that the height of the tree is O(lg n)
• Red-Black trees provide one mechanism for creating balanced trees, 

meaning that they guarantee O(lg n) for applicable BST operation
• This requires extra work while inserting and deleting in the form of tree 

rotations

• Bottom line: as long as our tree satisfies the Red-Black tree invariants 
(which it does with appropriate insert/delete procedures), then we can 
assume optimal running time for BSTs


