
Red-Black Trees
(A Balanced BST)

https://cs.pomona.edu/classes/cs140/
Some notes taken from

http://www.geeksforgeeks.org/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss tree balancing (rotations, insertions, deletions)
• Prove the balancing characteristic of red-black trees
• Discuss the running time of red-black tree operations

Assessments
• Red-black tree activity

Extra Resources

• Introduction to Algorithms, 3rd, chapter 13

• https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Implementations

Althought Red-Black trees are not the most modern choice, they do
appear in

• Java: TreeMap<K,V>

• C++: std::map

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://en.cppreference.com/w/cpp/container/map

Balanced Binary Search Trees

• Why is balancing important?
• What is the worst case for a binary tree?

• Balanced tree: the height of a balanced tree stays O(lg n) after
insertions and deletions

• Many different types of balanced search trees:
• AVL Tree, Splay Tree, B Tree, Red-Black Tree

Red-Black Trees Invariants

1. Each node must be labeled either red or black

2. The root must be labeled black

3. The tree cannot have two red nodes in a row (for any red node its
parent, left, and right must be black)

4. Every root-NULL path must include the same number of black
nodes

Can a Red-Black tree of any height have only black nodes?

Red-Black Trees

Can a “chain” be a red-black tree?

1

2

3

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

Null

Null

Null Null

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

86

3

Null

Null Null

Null

Null Null

Color this as a Red-Black Tree

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

86

3

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

86

3

We could also move the black color down one level

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

86

3

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

6

3

Color this as a Red-Black Tree

Red-Black Trees

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

5

7

6

3

How did Red-Black Trees get their name?

Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg 𝑛 + 1 = 𝑂(lg 𝑛)

• Observation: if every root-NULL path has ≥ k nodes, then the tree
includes a perfectly balanced top portion with k levels

k = 3k = 2
What is k? What is k?

Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree
includes a perfectly balanced top portion with k levels

k = 3k = 2
What is k? What is k?

Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree
includes a perfectly balanced top portion with k levels

What is the
minimum number of
nodes (n) in the tree

based on k?

k n

Exercise question 1

Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree
includes a perfectly balanced top portion with k levels

What is the
minimum number of
nodes (n) in the tree

based on k?

k n

1 1

2

Red-Black Tree Height

• Claim: every Red-Black tree has a 𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL path has ≥ k nodes, then the tree
includes a perfectly balanced top portion with k levels

What is the
minimum number of
nodes (n) in the tree

based on k?

k n

1 1

2 3

3

4

5

6

Red-Black Tree Height

• Claim: every Red-Black tree has a
𝑡!"#$!% ≤ 2 lg(𝑛 + 1)

• Observation: if every root-NULL
path has ≥ k nodes, then the tree
includes a perfectly balanced top
portion with k levels

k = 3

What is the
minimum number of
nodes (n) in the tree

based on k?

k = 4

Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k
nodes, then the tree includes a perfectly
balanced top portion with k levels

2k - 1 was the minimum number of nodes

Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k
nodes, then the tree includes a perfectly
balanced top portion with k levels

At most k black nodes

At most lg(n + 1) black nodes

Red-Black Tree Height

• So, we have:
𝑛 ≥ 2& − 1
lg 𝑛 + 1 ≥ 𝑘

• So, we now have an upper bound on k.
• But how does k help us bound the actual height of the tree?
• What does k tell us about the number of black nodes you can have?
• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has ≥ k
nodes, then the tree includes a perfectly
balanced top portion with k levels

At most k black nodes

At most lg(n + 1) black nodes

How many red nodes
on any root-Null path?

Red-Black Tree Height

• Thus: in a Red-Black tree with n nodes,
there is a root-NULL path with at most
lg (n + 1) black nodes

• By invariant (4): every root-NULL path
has ≤ lg 𝑛 + 1 black nodes

• By invariant (3): every root-NULL path
has ≤ lg 𝑛 + 1 red nodes

• Thus, a total of ≤ 2lg 𝑛 + 1 nodes on
every root-NULL path

1. Each node must be labeled
either red or black

2. The root must be labeled black
3. The tree cannot have two red

nodes in a row (for any red
node its parent, left, and right
must be black)

4. Every root-NULL path must
include the same number of
black nodes

Red-Black Trees

• If our tree can be colored as a Red-Black tree, then every root-NULL path
has ≤ 2lg 𝑛 + 1 nodes total

• The longest path will dictate the height of the tree

• So, height of the tree is at most 2lg 𝑛 + 1

• A tree cannot contain a chain of three nodes

• Thus, the height of the tree is O(lg n)
• Why is this important?

lg(n+1) = lg n + lg(1 + 1/n) = lg n + C

Draw a Worst-Case (most lopsided) Red-Black Tree with a
minimum of 3 black nodes on every root-NULL path

Exercise question 2

Red-Black Trees, Inserting a Node

1. Insert the new node

2. Color it red

3. Fix colors to enforce Red-Black Tree invariants
1. This is a recursive process

Red-Black Trees, Inserting a Node

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the

grandparent to red
III. Go to step (2) and treat grandparent as new

node

G

P A

N

Why?

Why?

Parent

Grandparent

Aunt/Uncle

Move the black color down

New Node

“Aunt” is usually called “Uncle”

Red-Black Trees, Inserting a Node

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the

grandparent to red
III. Go to step (2) and treat grandparent as new

node

G

P A

N

Why?

Why?

Parent

Grandparent

Aunt/Uncle

Move the black color down

New Node

“Aunt” is usually called “Uncle”

Red-Black Trees, Inserting a Node

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red
b) If aunt is black

I. Put the new node, its parent, and the
grandparent “in order” with the middle
node as the root

II. We have four possibilities for the current
positions of N, P, and G

G

P A

N

G

P A

N

G

A P

N

G

A P

N

Left-Left Left-Right

Right-Right Right-Left

Red-Black Trees, Inserting a Node: Left-Left

1. Right rotate around the
grandparent

G

P A

N

Left-Left

Tree Rotations: Right

x

y

b

c

a

z

Tree Rotations: Right

x

y

b

c

a

z

x

y

b

c

a

zOriginal

Tree Rotations: Right

x

y

b

c

a

z

x

y

b c

a

zOriginal Right-Rotated

Tree Rotations: Left

y

x

b c

a

z

Tree Rotations: Left

y

x

b c

a

zOriginal

y

x

b c

a

z

Tree Rotations: Left

y

x

b c

a

zOriginal

y

x

b

c

a

z Left-Rotated

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the
grandparent

G

P A

PR AL ARN

Left-Left

NL NR

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the
grandparent

2. Swap the colors of the
grandparent and the parent

G

P

A
PR

AL AR

N

Left-Left

NL NR

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the
grandparent

2. Swap the colors of the
grandparent and the parent

G

P

A
PR

AL AR

N

Left-Left

NL NR
G

P A

1 2 3N

Original

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

G

P A

AL ARPL
N

Left-Right

NL NR

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the
grandparent

G

P

A

AL AR

PL

N

Left-Right

NL

NR

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the
grandparent

3. Swap the colors of the
grandparent and the new
node

GP

A

AL AR

PL

N

Left-Right

NL NR

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the
grandparent

3. Swap the colors of the
grandparent and the new
node

GP

A

AL AR

PL

N

Left-Right

NL NR

Red-Black Trees, Inserting a Node

• What about the Right-Right and Right-Left options?
• They are the inverse of the cases we’ve just covered.
• What are the running times of these procedures?
• Inserting the new node?
• Recoloring?
• Restructuring?

• We’re not going to cover deletion, but what are your thoughts?
• Operation? (http://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/)
• Running time?

http://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/

FUNCTION RBTreeInsert(tree, new_node)
Search for position of new_node
parent = NONE
current_node = tree.root
WHILE current_node != NONE

parent = current_node
IF new_node.key < current_node.key

current_node = current_node.left
ELSE

current_node = current_node.right
new_node.parent = parent

2510

158

9

30

3528

20

22

FUNCTION RBTreeInsert(tree, new_node)
Search for position of new_node
…

Insert new_node as root or left/right child
IF parent == NONE

tree.root = new_node
ELSE IF new_node.key < parent.key

parent.left = new_node
ELSE

parent.right = new_node

2510

158

9

30

3528

20

22

FUNCTION RBTreeInsert(tree, new_node)
Search for position of new_node
…

Insert new_node as root or left/right child
…

Initialize the new_node
new_node.left = NONE
new_node.right = NONE
new_node.color = RED

RBTreeFixColors(tree, new_node)

2510

158

9

30

3528

20

22

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
IF aunt.color == RED

node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node = node.parent.parent

2510

158

9

30

3528

20

22

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
IF aunt.color == RED

…
ELSE
IF node == node.parent.right

node = node.parent
LeftRotate(tree, node)

node.parent.color = BLACK
node.parent.parent.color = RED
RightRotate(tree, node.parent.parent)

2510

158

9

30

3528

20

22

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
…

ELSE
aunt = node.parent.parent.left
IF aunt.color == RED

node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node = node.parent.parent

2510

158

9

30

3528

20

22

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

Look for aunt/uncle node
…
ELSE

aunt = node.parent.parent.left
…
ELSE

IF node == node.parent.left
node = node.parent
RightRotate(tree, node)

node.parent.color = BLACK
node.parent.parent.color = RED
LeftRotate(tree, node.parent.parent)

2510

158

9

30

3528

20

22

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

Look for aunt/uncle node
IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right
…

ELSE
aunt = node.parent.parent.left
…

tree.root.color = BLACK

2510

158

9

30

3528

20

22

25

20 30

3510

158

28

Is this a valid BST?

25

20 30

352810

158

Is this a valid BST?

25

20 30

352810

158

Is this a valid R-B Tree?

25

20 30

352810

158

22

Is this a valid R-B Tree?

25

20 30

352810

158

22

Is this the only valid coloring?

25

20 30

352810

158

22

Is this the only valid coloring?

25

20 30

352810

158

22

Is this the only valid coloring?

25

20 30

352810

158

22

Insert: 9

Exercise question 3

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

25

20 30

3510

158

9

2822

Insert: 9

Aunt

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the

grandparent to red
III. Go to step (2) and treat grandparent as new

node

25

20 30

3510

158

9

2822

Insert: 9 Aunt

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is red

I. Change color of parent and aunt to black
II. Change color of the new node and the

grandparent to red
III. Go to step (2) and treat grandparent as

new node

25

20 30

3510

158

9

2822

Insert: 9 Check the Aunt

1. Insert the new node
(always insert as a leaf)

2. If the inserted node is the root, then
color it black, otherwise color it red

3. If the new node is not root and its
parent is black, then we are done

4. Otherwise, look at the node's aunt
a) If aunt is black and left-left

a) Right rotate around the grandparent
b) Swap the colors of the grandparent and the

parent
c) Go to step (2) and treat grandparent as new

node

Left-left

2510

158

9

30

3528

20

22

Recolor

2510

158

9

30

3528

20

22

Valid R-B Tree?

2510

158

9

30

3528

20

22

BST Summary

• Most BST operations take O(height) time.
• With an unbalanced tree this could be as bad as O(n)
• We want to ensure that the height of the tree is O(lg n)
• Red-Black trees provide one mechanism for creating balanced trees,

meaning that they guarantee O(lg n) for applicable BST operation
• This requires extra work while inserting and deleting in the form of tree

rotations

• Bottom line: as long as our tree satisfies the Red-Black tree invariants
(which it does with appropriate insert/delete procedures), then we can
assume optimal running time for BSTs

