
Breadth First Search
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss breadth first search for graphs

Exercises
• Continued from previous lecture slides
• Compute distance with Breadth-first search

Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22

General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s

a

b

c

e

d

f g

h

Find an edge where one vertex
has been found and the other

vertex has not been found.

How do we choose the next edge?

found not found

Two common (and well studied) options

Breadth-First Search
• Explore the graph in layers
• “Cautious” exploration
• Use a FIFO data structure (can you think of an example?)

Depth-First Search
• Explore recursively
• A more “aggressive” exploration (we backtrack if necessary)
• Use a LIFO data structure (or recursion)

FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

FUNCTION Connectivity(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE

LOOP

(vFound, vNotFound) =

get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE

BREAK

ELSE

found[vNotFound] = TRUE

RETURN found

S
A

B

C
E

D

Given a tie, visit edges are in alphabetical order

FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0

vFound = visit_queue.pop()

FOR vOther IN G.edges[vFound]
IF found[vOther] == FALSE

found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

Exercise questions 2 and 3

Running Time
FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

How many times to we consider each edge?

What is the running time?

Running Time
FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)

RETURN found

How many times to we consider each edge?

What is the running time?

𝑇!"# 𝑛,𝑚 = 𝑂(𝑛$ +𝑚$)

where ns and ms are the nodes and
edges findable/connected from/to

the start vertex

Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path
from s to v
• Note: this is just a special case of the general algorithm that we

proved by contradiction

Question

The Shortest Path Problem
• How can we determine the fewest number of hops between the start

vertex and all other connected vertices?

s
a

b

c
e

d

Given a tie, visit edges are in alphabetical order

FUNCTION BFS(G, start_vertex)

found = {v: FALSE FOR v IN G.vertices}

found[start_vertex] = TRUE

visit_queue = [start_vertex]

WHILE visit_queue.length != 0

vFound = visit_queue.pop()

FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE

found[vOther] = TRUE

visit_queue.add(vOther)

RETURN found

How can we determine the fewest number
of hops between the start vertex and all

other connected vertices?

BFS Exercise Question 1

The Shortest Path Problem

Determine the fewest number of hops between the start vertex and all
other vertices

Same algorithm as before with the following additions:
• Initialize the distances[s] as 0
• Initialize all other distances to infinity
• When considering an edge (v, w)
• If w is not found, then set dist(w) to dist(v) + 1

s
a

b

c
e

d

Given a tie, visit edges are in alphabetical order

The Shortest Path Problem

After we terminate, distances[v] = ”the layer that v is in”

FUNCTION DistanceBFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE

distances = {v: INFINITY FOR v IN G.vertices}
distances[start_vertex] = 0

visit_queue = [start_vertex]
WHILE visit_queue.length != 0

vFound = visit_queue.pop()
FOR vOther IN G.edges[vFound]

IF found[vOther] == FALSE
found[vOther] = TRUE
visit_queue.add(vOther)
distances[vOther] = distances[vFound] + 1

RETURN distances

Connected Components

Let’s only consider undirected graphs for now

Let G = (V,E) be an undirected graph
Goal: compute all connected components in O(m + n)
• A component is any group of vertices that can reach one another
• For example, if we are trying to see if a network has become disconnected

Exercise question 2:
How would you do this using our BFS procedure from before?

A C

F

B

E I

H

D J

K

G

BFS Exercise Question 2

FUNCTION FindComponents(G)
components = []
found = {v: FALSE FOR v IN G.vertices}
FOR v IN G.vertices

IF NOT found[v]
newly_found = BFS(G, v)
new_component = {

w FOR w, w_is_found IN newly_found
IF w_is_found

}
component.append(new_component)
FOR w IN new_component:

found[w] = TRUE
RETURN components

