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Outline

Topics and Learning Objectives
• Discuss the basics of graphs
• Introduce graph searching

Exercise
• Graph search



Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22



Graphs

Represent pairwise relationships

Tons of uses
• Physical connections : roads (driving directions), network routing (phone), …
• Relationship groups : social networks, similar purchases, …
• Problem solving : each vertex may represent a partial part of the problem, and 

each edge is a step/move (e.g., Sudoku)

Tons of algorithms
• Cuts, clustering, searching, partitioning, contracting, …



Graphs

For many reasons, graph algorithms are extremely important.

They are  a ubiquitous tool for solving many engineering problems
• Signal traces on a PCB
• Balancing the load on a server
• Balancing the load across cores on a computer
• Scheduling the delivery of packages via drone
• Scheduling the path of an automated robot that is grabbing your Amazon purchase from shelves in a 

warehouse 
• Topological networks
• Data mirroring across a network
• Modeling an ecology
• Modeling the nervous system
• The list goes on and on

For this reason, you will often be asked graph-related questions during interviews







BFS vs Dijkstra’s vs A*
https://www.redblobgames.com/pathfinding/a-star/introduction.html



G = (V, E)

G is the standard symbol representing a graph

V is the standard symbol representing a set of graph vertices (|V| = n)
• Vertices are also sometimes referred to as nodes

E is the standard symbol representing a set of graph edges (|E| = m)
• Each edge contains pointers to two vertices, for example: (v1, v2)
• The order of the vertices may or may not matter
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Notation for Edges



Graph Search and Connectivity

Goals:
• Find everything that is findable (a “path” from the start node exists)
• Don’t explore anything twice (don’t waste time)

• These operations are done in linear time, 
• Note: it is often useful to consider O(n) algorithms as being “free”
• (when compared to more complex tasks)
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What is findable?
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Depends on where you start!
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Exercise Question 1
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General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s
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Find an edge where one vertex 
has been found and the other 

vertex has not been found.



General Algorithm Outline

Claim: at the end of this algorithm
• if v is found
• Then there exists a path from s to v

Proof by contradiction
• Suppose the graph G has a path p from the vertex s to the vertexs v
• Also suppose that upon completion of the algorithm v was not found
• Thus, we have an edge (u, w) such that u is found, and w is not found
• This is contradictory to the termination condition of the algorithm



Contradiction
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Suppose G has a path p from s to v
Also suppose that upon completion of the algorithm v was not found
Thus we have an edge (u, w) such that u is found and w is not found
This is contradictory to the termination condition of the algorithm



General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s
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has been found and the other 

vertex has not been found.



How do we choose the next edge?

found not found



Two common (and well studied) options

Breadth-First Search
• Explore the graph in layers
• “Cautious” exploration
• Use a FIFO data structure (can you think of an example?)

Depth-First Search
• Explore recursively
• A more “aggressive” exploration (we backtrack if necessary)
• Use a LIFO data structure (or recursion)


