
Graphs and Connectivity
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Discuss the basics of graphs
• Introduce graph searching

Exercise
• Graph search

Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22

Graphs

Represent pairwise relationships

Tons of uses
• Physical connections : roads (driving directions), network routing (phone), …
• Relationship groups : social networks, similar purchases, …
• Problem solving : each vertex may represent a partial part of the problem, and

each edge is a step/move (e.g., Sudoku)

Tons of algorithms
• Cuts, clustering, searching, partitioning, contracting, …

Graphs

For many reasons, graph algorithms are extremely important.

They are a ubiquitous tool for solving many engineering problems
• Signal traces on a PCB
• Balancing the load on a server
• Balancing the load across cores on a computer
• Scheduling the delivery of packages via drone
• Scheduling the path of an automated robot that is grabbing your Amazon purchase from shelves in a

warehouse
• Topological networks
• Data mirroring across a network
• Modeling an ecology
• Modeling the nervous system
• The list goes on and on

For this reason, you will often be asked graph-related questions during interviews

BFS vs Dijkstra’s vs A*
https://www.redblobgames.com/pathfinding/a-star/introduction.html

G = (V, E)

G is the standard symbol representing a graph

V is the standard symbol representing a set of graph vertices (|V| = n)
• Vertices are also sometimes referred to as nodes

E is the standard symbol representing a set of graph edges (|E| = m)
• Each edge contains pointers to two vertices, for example: (v1, v2)
• The order of the vertices may or may not matter

Directed and Undirected

C

A B

D

Undirected

Directed

(A, B)

(C, D)

(B, A)or

Notation for Edges

Graph Search and Connectivity

Goals:
• Find everything that is findable (a “path” from the start node exists)
• Don’t explore anything twice (don’t waste time)

• These operations are done in linear time,
• Note: it is often useful to consider O(n) algorithms as being “free”
• (when compared to more complex tasks)

Findable

1

2

3

s

5
4

Findable

1

2

3

s

5
4

Findable

1

2

3

s

5
4

1

2

3

s

5
4

Findable

1

2

3

s

5
4

1

2

3

s

5
4

What is findable?

s

a

b

c

e

d

f g

h

Depends on where you start!

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

What is findable?

s

a

b

c

e

d

f g

h

Exercise Question 1

s

a

b

c

e

d

f g

h

General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s

a

b

c

e

d

f g

h

Find an edge where one vertex
has been found and the other

vertex has not been found.

General Algorithm Outline

Claim: at the end of this algorithm
• if v is found
• Then there exists a path from s to v

Proof by contradiction
• Suppose the graph G has a path p from the vertex s to the vertexs v
• Also suppose that upon completion of the algorithm v was not found
• Thus, we have an edge (u, w) such that u is found, and w is not found
• This is contradictory to the termination condition of the algorithm

Contradiction

s

u

w

v

p

found not found

Suppose G has a path p from s to v
Also suppose that upon completion of the algorithm v was not found
Thus we have an edge (u, w) such that u is found and w is not found
This is contradictory to the termination condition of the algorithm

General Algorithm

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP

(vFound, vNotFound) = get_valid_edge(G.edges, found)

IF vFound == NONE || vNotFound == NONE
BREAK

ELSE
found[vNotFound] = TRUE

RETURN found s

a

b

c

e

d

f g

h

Find an edge where one vertex
has been found and the other

vertex has not been found.

How do we choose the next edge?

found not found

Two common (and well studied) options

Breadth-First Search
• Explore the graph in layers
• “Cautious” exploration
• Use a FIFO data structure (can you think of an example?)

Depth-First Search
• Explore recursively
• A more “aggressive” exploration (we backtrack if necessary)
• Use a LIFO data structure (or recursion)

