
Randomized (Linear-Time)
Selection

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Selection Problem

Input: A set of n numbers and an integer i, with 1 ≤ i ≤ n
Output: The element that is larger than exactly i - 1 other elements
• Known as the ith order statistic or the ith smallest number
• The minimum element is the 1st order statistic (i = 1)
• The maximum element is the nth order statistic (i = n)

What is “i” for the median? (an expression base on n)
• If n is even, then the medians are the n/2 and n/2 + 1 order statistics
• If n is odd, then the median is the (n + 1)/2 order statistic

Reduction

Find the ith smallest number in an array

• Recall: it takes linear time just to read an array

• What would be a O(n lg n) algorithm for this problem?
• Sort
• Return the element at index i - 1

Selection Problem

• Can we do better than O(n lg n)?
• To beat O(n lg n) we cannot sort the entire array
• Note: comparison-based sorting cannot be done faster than O(n lg n)
• (you’ll prove this later)

• Do we even need to perform a comparison with all the elements?
• Yes!
• So we know that O(n) is our lower bound on the running time
• What is the upper bound?

Finding the minimum (1st) and maximum (nth)

FUNCTION FindMinimum(array)

n = array.length
min_val = array[0]

FOR val IN array[1 ..< n]
IF val < min_val

min_val = val

RETURN min_val

FUNCTION FindMaximum(array)

n = array.length
max_val = array[0]

FOR val IN array[1 ..< n]
IF val > max_val

max_val = val

RETURN max_val

What would an algorithm look like for finding the 2nd order statistic?

What would an algorithm look like for finding the 2nd order statistic?

General Algorithm

• How do you find the ith order statistic in the more general case?

Randomized Selection (Quickselect)

(Expected) linear-time complexity
• Same as scanning through the list once

One linear algorithm for this problem is called Randomized Selection

We are going to start by modifying the only randomized algorithm that
we we’ve seen so far: Quicksort

3 8 2 5 1 4 7 6

2 1 3 6 7 4 5 8

< P P > P

Key Component of Quicksort: Partitioning
Pivot

Pivot

3 8 2 5 1 4 7 6

2 1 3 6 7 4 5 8

Key Component of Quicksort: Partitioning

What if we are looking for the 5th order statistic?
• What is the fifth order statistic?
• Do we need to recursively look on both sides of the pivot?

Pivot

Pivot

Quicksort

FUNCTION QuickSort(array, left_index, right_index)

IF left_index ≥ right_index

RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)

QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

How do we turn this into Quickselect?

Quickselect

FUNCTION RSelect(array, left_index, right_index, ith)

IF left_index == right_index

RETURN array[left_index]

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

IF ith == pivot_index + 1

RETURN array[pivot_index]

ELSE IF ith < pivot_index + 1

RETURN RSelect(array, left_index, pivot_index, ith)

ELSE

RETURN RSelect(array, pivot_index + 1, right_index, ith)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

How do we turn this into Quickselect?

FUNCTION RSelectIter(array, left_index, right_index, ith)

LOOP

IF left_index == right_index
RETURN array[left_index]

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

IF ith == pivot_index + 1

RETURN array[pivot_index]

ELSE IF ith < pivot_index + 1

right_index = pivot_index

ELSE
left_index = pivot_index + 1

Iterative Version
1. Asymptotically, do you expect any

differences?
2. Practically, which do you think has

better performance?

Running time of Quickselect

• What is the worst possible running time?
• What is the worst pivot choice?

• What is the best possible running time?

• You’re more likely to finish the algorithm in linear time than in
quadratic (worst-case) time.

• Under normal operation, what is the best choice for a pivot?

Running time of Quickselect

• Under normal operation, what is the best choice for a pivot?
• What is the running time if we always deterministically pick the

median?
• How would you calculate the running time if I told you that the

algorithm always picked the median?

𝑇 𝑛 ≤ 𝑇
𝑛
2
+ 𝑂(𝑛) 𝑂(𝑛)

Quickselect

Hope: that the choice of pivot is “good enough” “often enough”

Theorem:
for every input array, the average running time of Quickselect is O(n)

Quickselect

FUNCTION RSelect(array, left_index, right_index, ith)

IF left_index == right_index

RETURN array[left_index]

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

IF ith == pivot_index + 1

RETURN array[pivot_index]

ELSE IF ith < pivot_index + 1

RETURN RSelect(array, left_index, pivot_index, ith)

ELSE

RETURN RSelect(array, pivot_index + 1, right_index, ith)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

Where is all the work done?

Quickselect

Hope: that the choice of pivot is “good enough” “often enough”

Theorem:
for every input array, the average running time of Quickselect is O(n)

All the work is done in partition and the total amount of work done in a
single call to partition is ≤ 𝑐𝑛

Notation for our proof

Quickselect is in phasej if the current subarray size is between

𝑛 ⋅ !
"

#$%
≤ (right_index – left_index) ≤ 𝑛 ⋅ !

"

#

• j = 0 : 0.75n to 1.00n
• j = 1 : 0.56n to 0.75n
• j = 2 : 0.42n to 0.56n
• j = 3 : 0.32n to 0.42n

• Multiple recursive calls can be
in the same phasej

• Some phases can be skipped

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

0.75n to 1.00n

0.56n to 0.75n

0.42n to 0.56n

0.32n to 0.42n

0.24n to 0.32n

Proof

• Multiple recursive calls can be in the same phasej
• Some recursive calls can skip over the next phasej
• Let Xj denote the number of recursive calls made during phasej
• Note: each recursive call in turn calls Partition

• What is the total running time of Quickselect?

𝑇 𝑛 ≤ &
&'()*!

𝑋#𝑐
3
4

#

𝑛

• Xj : number of calls in phasej (not an indicator variable)

• c : constant for amount of work done by Partition

• (¾)jn : upper bound on subarray size during phasej

• c(¾)jn : total amount of work during a single call in phasej

𝑇 𝑛 ≤ &
&'()*!

𝑋#𝑐
3
4

#

𝑛

Probability of leaving a phase?

• We leave phasej when our pivot is within the 25-75% middle part of
the subarray.

• So, if both the left and right sides contain less than 75% of elements

• What is the probability that we choose a partition in (25 .. 75]?

< P P > P

𝑛
3
4

!"#

, 𝑛
3
4

!

Probability of leaving a phase?

• We have (at worst) a 50% chance to pick a “good” partition element.
• Which means that we leave the current phasej .

• So, we have reduced our problem to the coin flip problem:

𝐸 𝑋# ≤ 𝐸 # 𝑜𝑓 𝑐𝑜𝑖𝑛 𝑓𝑙𝑖𝑝𝑠 𝑡𝑜 𝑔𝑒𝑡 ℎ𝑒𝑎𝑑𝑠

Heads : good pivot
Tails : bad pivot

Coin Flips

• Let N = the number of flips until you get a heads
(a geometric random variable)

E[N] = 1 + ½ E[N]
E[N] = 1 + ½ + ¼ E[N]
E[N] = 1 + ½ + ¼ + 1/8 E[N]
E[N] = 1 + ½ + ¼ + 1/8 + 1/16 E[N]
…

Need at least one flip. Then we
have a 50% chance that it was
tails and we need to flip again.

Coin Flips

• Let N = the number of flips until you get a heads
(a geometric random variable)

E[N] = 1 + ½ E[N]
E[N] = 1 + ½ + ¼ E[N]
E[N] = 1 + ½ + ¼ + 1/8 E[N]
E[N] = 1 + ½ + ¼ + 1/8 + 1/16 E[N]
E[N] = 2

Need at least one flip. Then we
have a 50% chance that it was
tails and we need to flip again.

Coin Flips

• Let N = the number of flips until you get a heads
(a geometric random variable)

• Alternatively, what is the expected number of heads per coin flip?

𝐸 #𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑓𝑙𝑖𝑝 =
1
2 1 1 +

1
2 1 0 =

1
2

𝑇𝑜𝑡𝑎𝑙ℎ𝑒𝑎𝑑𝑠 = 𝐸 #𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑓𝑙𝑖𝑝 1 𝑁
1 = !

"
à N=2

Back to the proof

𝐸 𝑇 𝑛 ≤ 𝑐𝑛 &
&'()*!

𝐸[𝑋#]
3
4

#

𝑇 𝑛 ≤ &
&'()*!

𝑋#𝑐
3
4

#

𝑛

Expected Value of T

𝐸 𝑇(𝑛) ≤ 𝐸 &
&'()*#

𝑋# 𝑐
3
4

#

𝑛

𝐸 𝑇(𝑛) ≤ 𝑐𝑛 &
&'()*#

𝐸[𝑋#]
3
4

#

?

Expected Value of T

𝐸 𝑇(𝑛) ≤ 𝐸 &
&'()*#

𝑋# 𝑐
3
4

#

𝑛

𝐸 𝑇(𝑛) ≤ 𝑐𝑛 &
&'()*#

𝐸[𝑋#]
3
4

#

2

Expected Value of T

𝐸 𝑇(𝑛) ≤ 𝐸 &
&'()*#

𝑋# 𝑐
3
4

#

𝑛

𝐸 𝑇(𝑛) ≤ 2𝑐𝑛 &
&'()*#

3
4

#

𝐸 𝑇(𝑛) ≤ 2𝑐𝑛4 = 𝑐+,-./0*1𝑛 = 𝑂(𝑛)

Converges to 4
We saw the same
summation in our proof
of the master theorem

Geometric sequence

≤
1

1 − 𝑟
=

1

1 − 3
4

= 4

Running time of Quickselect

𝐸 𝑇(𝑛) ≤ 𝑐+,-./0*1𝑛 = 𝑂(𝑛)

Thus, the average running time of Quickselect T(n) <= O(n)

