
Quicksort Running Time
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Learn how quicksort works
• Learn how to partition an array

Exercise
• Running time

Extra Resources

• https://me.dt.in.th/page/Quicksort/
• https://www.youtube.com/watch?v=ywWBy6J5gz8
• CLRS Chapter 7

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8

Choosing a Pivot

What is Quicksort’s running time? (can we use master theorem?)
• It depends on the pivot

What is the worst case for Quicksort, and what is its running time?
• Always select the smallest (or largest) possible pivot and it takes O(n2)
• Think of a one-sided tree

What is the best case for Quicksort, and what is its running time?
• Always select the median element as a pivot leading to O(n lg n)
• Think of a balanced tree

Recursion tree for the worst and best cases of Quicksort

8

4 3

2 1 1 1

1

8

7

6

5

4

3

2

1

5n = 40 5n = 40

+ 5 (n-1) = 35

+ 5 (n-2) = 30

Let’s assume
the cost of
Partition is 5m

+ 5 (n-3) = 25

+ 5 (n-4) = 20

+ 5 (n-5) = 15

+ 5 (n-6) = 10

T(n) = 180

+ 5 (n-1) = 35

+ 5 (n-3) = 25

+ 5 (n-7) = 5

+ 5 (n-7) = 5

T(n) = 105

Recursion tree for the worst and best cases of Quicksort

How would you select a pivot?

• If pivot selection is so important, how should we do it?

• Shouldn’t we take great care in selecting the pivot?

• Key idea for Quicksort: select the pivot uniformly at random!
• Easy
• Fast
• Gets good results as long as the pivots are “decent” fairly “often”

Random Pivots

• Some foreshadowing:

If the randomly chosen pivot is close to the median (in the middle
25-75 % range) we will get an average running time of O(n lg n)

• We cannot use the master theorem

• We are going to show the runtime of quicksort another way

Quicksort Theory

For every input of the array of length n, the average running time of
quicksort with random pivots is O(n lg n).

This is a big deal; it means that the average running time is closer to the
best-case than it is to the worst-case.

Note: here, average refers to the algorithm itself–it does not depend on the
input.
• If we re-run quicksort on the same input we will get different pivots each

time, and we are talking about the average running time of quicksort for
these different sequences of pivots on the same input array.

Quicksort

FUNCTION QuickSort(array, left_index, right_index)

IF left_index ≥ right_index

RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)

QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

We are going to count the number of comparisons
performed inside the for-loop.

Most of the work is done inside Partition

Some notation

Let Zi = ith smallest element of A (not the ith element)

Zi

Z
Index 0 1 2 3 4 5 6 7
Value 51 43 17 83 79 23 61 37

What is Z1

Zi

Z Z1
Index 0 1 2 3 4 5 6 7
Value 51 43 17 83 79 23 61 37

What is Z2

Zi

Z Z1 Z2
Index 0 1 2 3 4 5 6 7
Value 51 43 17 83 79 23 61 37

Zi

Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
Index 0 1 2 3 4 5 6 7
Value 51 43 17 83 79 23 61 37

Some notation

Let Zi = ith smallest element of A (not the ith element)

Let Xi,j be a random variable for the number of times Zi and Zj get
compared during a call to Quicksort

i and j can be any indices, but I’ll normally use i for the lower index

How many times can Zi and Zj possibly be compared?

X2,4

Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
Index 0 1 2 3 4 5 6 7
Value 51 43 17 83 79 23 61 37

Exercise Question 1
How many times can two elements be compared by a single run of the

Quicksort algorithm?

Some notation

Let Zi = ith smallest element of A (not the ith element)

Let Xi,j be a random variable for the number of times Zi and Zj get
compared during a call to Quicksort

How many times can Zi and Zj possibly be compared?
• Can only be compared 0 or 1 times!
• Every comparison involves the pivot, but the pivot is excluded from

recursive calls.

X2,4
left_index right_index

Z4 Z1 Z8 Z7 Z2
Z Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3

Index 0 1 2 3 4 5 6 7

Value 51 43 17 83 79 23 61 37

FUNCTION QuickSort(array, left_index, right_index)

IF left_index ≥ right_index

RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)

QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

The upper index is exclusive

right_index is not included in comparisons

Every comparison involves the pivot, but the pivot is excluded from recursive calls.

Exercise Question 2
How many comparisons will be performed by Quicksort if we always
pick the median element as the pivot? You only need to consider the

case when n = 8. You should draw a recursion tree and note how many
comparisons are performed at each subproblem.

Considering Xi,j

• Space of all possible outcomes is Ω
• A comparison happens (1)
• Or it doesn’t (0)
• This is an indicator variable

• What is the expected value of X (E[X])?
• We need to know the probability of a comparison

𝑝(𝑋!,# = 1)

Probability that Zi, Zj get compared

Consider any Zi, Zi+1 , …, Zj-1, Zj from the array
• Remember that these are not contiguous in the array, they are a

numbers in increasing order

What can you tell me about this group of numbers? (Hint: consider
different values for the pivot element)

If none of these are chosen as a pivot, all are passed to the same
recursive call.

p(𝑋!,# = 1)

Zi, Zj

Z5 Z4 Z1 Z8 Z7 Z2 Z6 Z3
51 43 17 83 79 23 61 37

What is the probability that Z3 (37) and Z7 (79) are compared?

Probability that Zi, Zj get compared

Consider any Zi, Zi+1 , …, Zj-1, Zj from the array

Among these values, consider the first one that gets chosen
1. If Zi or Zj are chosen first, then Zi and Zj are compared.
2. If one of Zi+1, …, Zj-1 is chosen, then Zi and Zj are NEVER compared.

Why?
1. If is chosen, then they become a pivot and the two values get compared
2. If a value in the middle gets chosen, then they go to separate calls

p(𝑋!,# = 1)

Probability that Zi, Zj get compared

𝑝 𝑋!,# = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2
𝑗 − 𝑖 + 1

• What does this mean for two values that are close to each other?

• What does this mean for two values that are far from each other?

Counting the total number of comparisons

What	is	total	number	of	comparisons?

X$%$&' = J
!()

*+)

J
#(!,)

*

𝑋!,#

𝐸 𝑋-.-/0 = J
!()

* +)

J
#(!,)

*

𝐸[𝑋!,#]
Linearity of expectations

Every possible comparison

Counting the total number of comparisons

𝐸 𝑋-.-/0 = J
!()

* +)

J
#(!,)

*

𝐸[𝑋!,#]

𝐸 𝑋-.-/0 = J
!()

* +)

J
#(!,)

*

p 𝑋!,# = 1 ⋅ 1 + p 𝑋!,# = 0 ⋅ 0

Counting the total number of comparisons

𝐸 𝑋-.-/0 = J
!()

* +)

J
#(!,)

*

𝐸[𝑋!,#]

𝐸 𝑋-.-/0 = J
!()

* +)

J
#(!,)

*

p 𝑋!,# = 1 ⋅ 1 + p 𝑋!,# = 0 ⋅ 0

Counting the total number of comparisons

𝑝 𝑋!,# = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2
𝑗 − 𝑖 + 1

𝐸 𝑋!"!#$ = $
%&'

()'

$
*&%+'

(

𝑝 𝑋%,* = 1 = $
%&'

()'

$
*&%+'

(
2

𝑗 − 𝑖 + 1

Simplifying the Inner Summation

Consider a fixed value for i (i=1)

!
!"#$%

&
2

𝑗 − 𝑖 + 1
=!

!"'

&
2
𝑗
=2 ⋅

1
2
+
1
3
+⋯+

1
𝑛 − 1 + 1

Consider another fixed value for i (i=5)

!
!"#$%

&
2

𝑗 − 𝑖 + 1
=!

!"(

&
2

𝑗 − 4
= 2 ⋅

1
2
+
1
3
+⋯+

1
𝑛 − 5 + 1

-
!"#

$%#

-
&"!'#

$
2

𝑗 − 𝑖 + 1

The inner summation
is maximized with i=1

Counting the total number of comparisons

p 𝑋!,# = 1 =
2

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐ℎ𝑜𝑖𝑐𝑒𝑠
=

2
𝑗 − 𝑖 + 1

𝐸 𝑋!"!#$ = $
%&'

()'

$
*&%+'

(

p 𝑋%,* = 1 = $
%&'

()'

$
*&%+'

(
2

𝑗 − 𝑖 + 1

𝐸 𝑋!"!#$ ≤ 2$
%&'

()'

$
*&4

(
1

𝑗 − 1 + 1

Simplify by turning this
into an inequality and

taking the value for i that
results in the biggest

number
Summations no

longer depends on i

Counting the total number of comparisons

𝐸 𝑋!"!#$ ≤ 2$
%&'

()'

$
*&4

(
1

𝑗 − 1 + 1

𝐸 𝑋!"!#$ ≤ 2𝑛$
*&4

(
1
𝑗

𝐸 𝑋!"!#$ ≤ 2𝑛/
'

(
1
𝑥
𝑑𝑥 = 2𝑛 ln 𝑥

𝑛
1
= 2𝑛(ln 𝑛 − ln 1) = 2𝑛 ln 𝑛 = 𝑂(𝑛 lg 𝑛)

Summations no
longer depends on i

Change of base for logarithms

Summary

𝐸 𝑋-.-/0 ≤ 𝑂(𝑛 lg 𝑛)

• The expected number of comparisons is O(n lg n)

• The expected number of comparisons is directly proportional to the
total running time of Quicksort

• The average asymptotic running time of Quicksort of O(n lg n)

