
Quicksort Implementation
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives
• Learn how quicksort works
• Learn how to partition an array

Exercise
• Partitioning



Extra Resources

• https://me.dt.in.th/page/Quicksort/
• https://www.youtube.com/watch?v=ywWBy6J5gz8
• CLRS Chapter 7

https://me.dt.in.th/page/Quicksort/
https://www.youtube.com/watch?v=ywWBy6J5gz8


Quicksort

• A practical and simple algorithm
• The running time = O(n lg n)
• Superior to other O(n lg n) in some respects
• The hidden constants are small (hidden by Big-O) 
• Our first stochastic algorithm



Quicksort

Input : an array of n elements in any order

Output : a reordering of the input array such that the elements are in 
non-decreasing order

Key idea of Quicksort: partition the array around a pivot element



Key concept of Quicksort

• Pick an element and call it the pivot
• Partition (rearrange) the elements so that:
• Everything to the left of the pivot is less than the pivot
• Everything to the right of the pivot is greater than the pivot
• Let’s ignore ties for now

• This is a partial sorting into “buckets”
• What can you tell me about the pivot?
• Pivot is now in the correct spot (we’ve made progress!)

What would be the running time of 
calling partition on every element?



3 8 2 5 1 4 7 6

Partitioning

3 82 51 476



3 8 2 5 1 4 7 6

2 1 3 6 7 4 5 8

Partitioning

< P P > P



Pivot around “hello”
[“hello”, “are”, “you”, “how”, “today”, “doing”, “class”]



Quicksort (NOT IN-PLACE PARTITIONING)

1. FUNCTION BadQuicksort(array)
2. IF array.length ≤ 1
3. RETURN array
4.
5. pivot_index = ChoosePivot(array.length)
6. left_array, right_array = Partition(array, pivot_index)
7.
8. left_sorted = BadQuicksort(left_array)
9. right_sorted = BadQuicksort(right_sorted)
10.
11. RETURN left_sorted ++ array[pivot_index] ++ right_sorted

What is the recurrence 
equation for Quicksort?



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 8



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 8



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 5 8



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 2 1 5 8



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8



Partitioning the Easy Way

• How would you partition? (how did we perform a merge?)
• Copy all elements to a new array

• This would be like merge sort. 
• Lots of memory allocations (one for each node in the recursion tree).

3 8 2 5 1 4 7 6Original array

New array 1 2 3 6 7 4 5 8



Partitioning the Easy Way

• Nothing inherently wrong with this approach in theory
• But can we do the same thing without the extra memory?

• Note: implementing merge sort “in-place” is possible
• You can do so with an iterative (stack based) approach



Partitioning In-Place

• For now, assume that the pivot is in the first spot of a subarray
• (we can swap the pivot with the first spot if needed)

• Idea: gradually build up a subarray that is correctly partitioned by 
scanning through the array

P < P > P Un-partitioned



Partitioning In-Place

P < P > P Un-partitioned

i j

3 8 2 5 1 4 7 6

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition



P < P > P Un-partitioned
i j

3 8 2 5 1 4 7 6

i j

Un-partitioned

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 8 belong?

How do I put it there?

How should we initialize i and j?



3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?



3 8 2 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?



3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 2 belong?

How do I put it there?

Now what?



3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 5 belong?

How do I put it there?



3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?



3 2 8 5 1 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?



3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

To which partition does 1 belong?

How do I put it there?

Now what?



3 2 1 5 8 4 7 6

i j

Un-partitioned

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition



3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned
i j

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition

Now what?



3 2 1 5 8 4 7 6

i j

P < P > P Un-partitioned
i j

swap

Index one to the right of the “smaller-than“ partition Index one to the right of the “larger-than” partition



1 2 3 5 8 4 7 6



1. FUNCTION Partition(array, left_index, right_index)
2. # Partition the subarray array[left_index ..< right_index]
3. # around the value at left_index
4.
5. pivot_value = array[left_index]
6.
7. i = left_index + 1
8. FOR j IN [left_index + 1 ..< right_index]
9. IF array[j] < pivot_value
10. swap(array, i, j)
11. i = i + 1
12.
13. swap(array, left_index, i - 1)
14. RETURN i - 1

1.O(n), where n is
right_index - left_index

2.In-place
no extra memory

What is the asymptotic running time?



1. FUNCTION QuickSort(array, left_index, right_index)

2. IF (left_index + 1) ≥ right_index

3. RETURN
4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function 
expects the pivot element to 

be at left_index



1. FUNCTION QuickSort(array, left_index, right_index)

2. IF left_index ≥ right_index

3. RETURN
4.

5. MovePivotToLeft(left_index, right_index)

6. pivot_index = Partition(array, left_index, right_index)

7.

8. QuickSort(array, left_index, pivot_index)

9. QuickSort(array, pivot_index + 1, right_index)

Our Partition function 
expects the pivot element to 

be at left_index

How would you call QuickSort?


