* Captions

* Google sheet

* Assignment

* Loop invariants
* Merge sort

* Record

Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Notes

e Assignment due tomorrow
* Checkpoint 1 next Wednesday
* Slack, checked out pinned messages

Outline

* Learn more about Divide and Conquer paradigm

* Learn about the closest-pair problem and its O(n Ig n) algorithm
e Gain experience analyzing the run time of algorithms
* Gain experience proving the correctness of algorithms

* Closest Pair

Closest Pair Problem

 Input: P, a set of n points that lie in a (two-dimensional) plane

* Qutput: a pair of points (p, q) that are the “closest”
* Distance is measured using Euclidean distance:

d(p, q) = sqrt((px - ax)*+ (py, - 9,)°)

Closest Pair Problem

e What is the brute force method for t

Can we do better
than O(n?)?

nis search?

* What is the asymptotic running time of the brute force method?

mput pl p2 p3 p4d p5 p6 p7/
One-dimensional closest pair

p6 p4 pl p3 P> p7 p2

How would you find the closest two points?

e Sort by position:O(nlgn) p6 p4 pl p3 p5 p7 p2
e Return the closest two using a linear scan : O(n)

* Total time : O(nIg n) + O(n) = O(n lg n)

Any problems using this approach for the two-dimensional case?
* How do you sort the points?
 Sorting does not generalize to higher dimensions!

1. Which two are closest
on the y-axis?

00-

—

1. Which two are closest
on the y-axis?

1. Which two are closest
on the y-axis?

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate O(nlgn)

P : [po(1,10), p1(2,8), p2(7,3), p3(5,7), 14(8,4), p5(3,5), p6(16,9), p7(9,1)]

Sorted by x coordinate

Px : [po(1,10), p1(2,8), p5(3,5), p3(5,7), p2(7,3), p"(8,4), p7(9,1), p6(16,9)]

Sorted by y coordinate

Py : [p7(9,1), p2(7,3), 04(8,4), p5(3,5), p3(5,7), pi(2,8), p6(1e,9), po(1,10)]

(909

-
® 6COe

o o900 _ 90U 00

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate O(nlgn)

e Can we still end up with a O(n Ig n) algorithm for finding the closest pair?
* Does the closeness of two points on one axis matter?

1. FUNCTION FindClosestPair(points)

2. points_x = copy_and_sort_by x(points)
3. points_y = copy_and_sort_by y(points)
4 RETURN ClosestPair(points_x, points_y)

Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
1. Sort by x-coordinate

2. Sort other by y-coordinate O(nlgn)

e Can we still end up with a O(n Ig n) algorithm for finding the closest pair?
* Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method

Divide-and-Conquer
into smaller subproblems

the subproblems via recursive calls
3. COMBINE solutions from the subproblems

* How would you divide the problems?

. Which two are closest
on the y-axis?

. Which two are closest
on the x-axis?

. Which two are closest?

. How would you divide
the search space?

1. Which two are closest
on the y-axis?

2. Which two are closest
on the x-axis?

3. Which two are closest?

This is not the average x-value

1. FUNCTION ClosestPair(px, py)

2. n = px.length

3. IF n ==

4, RETURN px[0], px[1], dist(px[0], pxI[1])
5.

6.

/.

8. pl, gl, dl = ClosestPair(left_px, left_py)
9.

10. How do we create these arrays?
11.

12. pr, qr, dr = ClosestPair(right_px, right_py)

P : [po(1,10), pl 7,3), p3(5,7), p"(8,4), p5(3 9,9), p7(9,1)]
Sorted,b nordinate
PXx

Sorted by y coordinate

Py : [p7(9,1), p2(7,3), 04(8,4), p5(3,5), p3(5,7), p1i(2,8), p6(1e,9), po(1,10)]

o 1. How do we create left px?
2. How do we create right px?
O 3. How do we create left_py? i
@

4. How do we create right py?

® 000 _ U e

OCoOoONOUT R, WN M-

B
NS -

FUNCTION ClosestPair(px, py)
n = px.length

IF n ==
RETURN

left_px =

px[0], px[1], dist(px[0], pxI[1])

px[0 ..< n//2]
[p FOR p IN py IF p.x < px[n//2].x]
= ClosestPair(left_px, left_py)

Median x value

px[n//2 ..< n]

[p FOR p IN py IF p.x = px[n//2].x]
= ClosestPair(right_px, right_py)

Any problems o0
with our current
approach?

OCOoOONOUTESWN =

R R R RPRRRRPE
NOUPDMRWNRPRO-

FUNCTION ClosestPair(px, py)
n = px.length
IF n ==
RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, gl, dl = ClosestPair(left_px, left_py)

What time complexity does this

right px = px[n//2 ..< n] process need such that the overall
right_py = [p FOR p IN.py]_:F P algorithm runs in O(n Ig n)?
pr, qr, dr = ClosestPair(rig Hint: think about Merge Sort.
d = min(dl, dr)

ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qgr, dr, ps, qs, ds)

Exercise Question 1

Running time needed for ClosestSplitPair?

Merge Sort and It’s Recurrence Equation

FUNCTION RecursiveFunction(some_input)
IF base_case:

RETURN base_case_work(some_input)

one
two

RecursiveFunction(some_input.first_half)
RecursiveFunction(some_input.second_half)

one_and_two = Combine(one, two)

RETURN one_and_two

OCOoOONOUTESWN =

R R R RPRRRRPE
NOUPDMRWNRPRO-

FUNCTION ClosestPair(px, py)
n = px.length
IF n ==
RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, gl, dl = ClosestPair(left_px, left_py)

right_px = px[n//2 ..< n]

right_py = [p FOR p IN py IF p. How do we find the
pr, qr, dr = ClosestPair(right_grgloaS e E it Elas ol lerials
d = min(dl, dr) two sides?

ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qgr, dr, ps, qs, ds)

Key |dea

* In ClosestSplitPair we only need to check for pairs that are
closer than those found in the recursive calls to ClosestPair

* This is easier () than trying to find the closest split pair without
any extra information!

FUNCTION ClosestSplitPair(px, py, d)
n = px.length
x_median = px[n//2].x
middle py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 ..< middle_py.length - 1]
FOR j IN [1 ..= min(7, middle_py.length - 1i)]
p = middle_pyl[il, q = middle_pyl[i + jl
IF dist(p,) < closest_d
closest_d = dist(p, q)
closest_p p, closest_qg = q

RETURN closest_p, closest_qg, closest_d

middle py

FUNCTION ClosestSplitPair(px, py, d) ‘
n = px.length
x_median = px[n//2].x ‘ ‘
middle_py = [p FOR p IN py
IF x_median - d < p.x < x_median + d] pl

closest_d = INFINITY, closest_p = closest_q = NONE dl ‘
FOR i IN [0 ..< middle_py.length - 1] ‘
FOR j IN [1 ..= min(7, middle_py.length - i)] ‘ ql
p = middle_py[il, q = middle_pyl[i + j]
IF dist(p, q) < closest_d ‘ “

closest_d
closest_p

dist(p, q)
p, closest_qgq = q

RETURN closest_p, closest_q, closest_d
d d

X_median

Exercise Question 2

Running Time of Nested For-Loops

middle py

FUNCTION ClosestSplitPair(px, py, d) ‘
n = px.length
x_median = px[n//2].x ‘ ‘
middle_py = [p FOR p IN py
IF x_median - d < p.x < x_median + d] pl

closest_d = INFINITY, closest_p = closest_q = NONE dl ‘
FOR i IN [0 ..< middle_py.length - 1] ‘
FOR j IN [1 ..= min(7, middle_py.length - i)] ‘ ql
p = middle_py[il, q = middle_pyl[i + j]
IF dist(p, q) < closest_d ‘ “

closest_d
closest_p

dist(p, q)
p, closest_qgq = q

RETURN closest_p, closest_q, closest_d
d d

X_median

Claim

letp € , q € be a split pair withd(p, gq) < d
Then
A. pandqg€ , and

B. pand qare at most 7 positions apart in

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSp litPalr procedure finds it.

Corollary 2: ClosestPailr is correct and runsin O(n Ig n)
same recursion tree as merge sort

Proof—Part A

letp € left, q € right beasplitpairwithd(p, q) < d niddle py

Than .
A. pandgemiddle py,and - °

. -
N
®
If p=(x1,yl) € left AND q = (x2,y2) € right AND d(p,q) < d - ql
-

Then G ¢
x median - d < %1 < x median and P

x median S %2 < x median + d $

d d

X_median

Otherwise, p and g would not be the closest pair with d(p, q) < d

Proof—Part A

letp € left, q € right beasplitpairwithd(p, q) < d niddle py

Than .
A. pandgemiddle py,and - °

. -
N
®
If p=(x1,yl) € left AND q = (x2,y2) € right AND d(p,q) < d - ql
-

Then G ¢
x median - d < %1 < x median and P

x median S %2 < x median + d $

d d

X_median

Otherwise, p and g would not be the closest pair with d(p, q) < d

Claim

letp € left, g € right beasplit pairwithd(p, q) < d
Then
A. pandg€emiddle py, and

B. pandqare at most 7 positions apartin middle py

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then our
ClosestSplitPair procedure finds it.

Corollary 2: CLlosestPair is correct and runs in O(n Ig n)
same recursion tree as merge sort

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

d d

Xx_median

middle py

Proof—Part B

p and g are at most 7 positions apartinmiddle py

p‘.q -

How many other points can possibly be in this area? -

dd

X_median

d

min[yl, y2]

X_median

Proof—Part B . .

p and g are at most 7 positions apart

min[y1, y2]

| n d Xx_median

Lemma 1: All points of with a y-coordinate between those of p and q lie
within those 8 boxes.

Proof:

1. First, recall that the y-coordinate of p, q differs by less than d.

2. Second, by definition of , all have an x-coordinate
between x_median += 0.

Proof—Part B . .

p and g are at most 7 positions apart

min[y1, y2]

inmiddle py ; «_median

Lemma 1: All points of middle py with a y-coordinate between those of p and q lie
within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. aand Db are either both in L or both in R | 1l 5= selaidele eulelar iz o) e e 7= s St =e
2. d(a,b)<=d/2 sgrt(2) < d

Max distance within box is d/\/i

¥

X median

Claim

letp € , q € be a split pair withd(p, gq) < d
Then
A. pandqg€ , and

B. pand qare at most 7 positions apart in

If the claim is true:

Corollary 1: If the closest pair of P is in a split pair, then
ClosestSp litPalr procedure finds it.

Corollary 2: ClosestPailr is correct and runsin O(n Ig n)
same recursion tree as merge sort

Closest Pair

Copy P and sort one copy by x and the other copy by y in
Divide P into a left and right in
Conquer by recursively searching and

B W

Look for the closest pair in middle_py in

* Must filter by x
* And scan through middle_py by looking at adjacent points

w“ﬂwsed.zo

w8642

16

12

10

16

12

10

16

14

o N & ®© ® B3 B B B

o N & ® ® 3 B B B

16
14
12 »
10
8
6
4
2,
0

16

Closest Split Pair

12

10

N & ® ® 3 B B B3

N & o ® 3 R BB

B

. I
AR -----

14

12

10

12

10

16

14

12

10

14

12

10

16

14

12

e

14

12

12

10

10

16

12

12

10

14

12

10

16

14

12

10

16

14

12

10

16

14

12

10

16

-4

14

14

12

12

12

12

10

10

10

10

14

12

10

16

14

12

10

16

12

14

12

10

16

14

12

10

I - .

----) 8
- -

o -
e v N @ ® © T N © N

© ¥ N g ® © v & ©°

8
14

14

12

10

= N 2 @« © -~ =

16

12

14

12

10

12

10

-4

14

14

12

12

12

12

10

10

10

14

10

16

14

12

10

@® © T N =

16

12

12

10

.
“
2
10
8
6
4
2

°

12

10

N & o @ 3 B F O3

°

3 8 ® 3

s o

L
N IIIII

3
N

B0 FUNCTION ClosestPair(px, py) T(n)
= px. length

2 T(n/2) + 0(n)
O(n 1g n)

. IF n ==
.. RETURN px[0@], px[1], dist(px[0], pxI[1])

BB left_px = px[0 ..< n//2]
e left_py = [p FOR p IN py IF p.x < px[n//2].x]
et al, di = ClosestPair(left_px, left_py)

BB right_px = px[n//2 ..< n]
B0 right_py = [p FOR p IN py IF p.x = px[n//2].x]
&) pr, gr, dr = ClosestPair(right_px, right_py)

= min(dl, dr)
.ps, qs, ds = ClosestSplitPair(px, py, d)

' RETURN Closest(pl, ql, di, pr, qr, dr, ps, gs, ds)

2 T(n/2) + 0(n)

FUNCTION MergeSort(array) T(n) o(n 1g n)

2 n = array. length
) IF n == 1

o(1) RETURN array
B0 left_sorted = MergeSort(array[0 ..< n//2])
MY right_sorted = MergeSort(arrayln//2 ..< nl)

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) 2 T(n/2) + 0(n)

O(n 1g n)

BB FUNCTION RecursiveFunction(some_input)
IF base_ case:

Usually 0(1)

RETURN base_case_work(some_input)

Two recursive calls, each with half the data
YWl one = RecursiveFunction(some_input.first_half)
uAN two RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually 0(n))
one_and_two = Combine(one, two)

RETURN one_and_two

