
Merge Sort
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives
• Learn how the merge sort algorithm operates
• Become aware of the “Divide and Conquer” algorithmic paradigm by 

analyzing merge sort

Exercise
• Recursion tree



Extra Resources

• Chapter 4: divide-and-conquer



Divide and Conquer

• This is an algorithm design paradigm
• Most divide and conquer algorithms are recursive in nature
• The basic idea is to break the problem into easier-to-solve 

subproblems

• What's easier to do:
• Sort 0, 1, or 2 numbers, or
• Sort 10 numbers



Merge Sort

• This is a “Divide and Conquer”-style algorithm

• Improves over insertion sort in the worst case

• Unlike insertion sort, the best/average/worst case running times of 
merge sort are all the same



What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted



What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(?)

O(?)

O(1)



T(n/2)

T(n/2)

What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)



T(n/2)

T(n/2)

What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(?)

O(1)



T(n/2)

T(n/2)

What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(?)

O(1)

T(n) = 2 T(n/2) + O(?) + 4 O(1)
= 2 T(n/2) + O(?)



Recurrence Equation

T(n) = 2 T(n/2) + O(?) + 4 O(1)
= 2 T(n/2) + O(?)



Merge Sort

5 4 1 8 7 2 6 3

5 4 1 8 7 2 6 3

1 4 5 8 2 3 6 7

1 2 3 4 5 6 7 8

Merge

Divide

Recursion/Conquer (not shown)

ß Sorted à





Merge Sort

5 4 1 8 7 2 6 3

5 4 1 8 7 2 6 3

1 4 5 8 2 3 6 7

1 2 3 4 5 6 7 8

Merge

Divide

Write the Merge routine

ß Sorted à

Recursion/Conquer (not shown)



FUNCTION Merge(one, two)
out[one.length + two.length] # Declare array

1 4 5 8 2 3 6 7

1 2 3 4 5 6 7 8



FUNCTION Merge(one, two)
out[one.length + two.length]
i = j = k = 0
WHILE k < out.length

IF one[i] < two[j]
out[k] = one[i]
i = i + 1

ELSE
out[k] = two[j]
j = j + 1

k = k + 1

What is the total 
running time?

Ignoring 
invalid 
indices



FUNCTION Merge(one, two)
out[one.length + two.length]
i = j = k = 0
WHILE k < out.length

IF one[i] < two[j]
out[k] = one[i]
i = i + 1

ELSE
out[k] = two[j]
j = j + 1

k = k + 1

Total Running Time
4
3

2 (m + 1)
3 m
3 m
2 m
0

3 m
2 m
2 m

Ignoring 
invalid 
indicies



Ignoring 
invalid 
indicies

FUNCTION Merge(one, two)
out[one.length + two.length]
i = j = k = 0
WHILE k < out.length

IF one[i] < two[j]
out[k] = one[i]
i = i + 1

ELSE
out[k] = two[j]
j = j + 1

k = k + 1

Total Running Time
4
3

2 (m + 1)
3 m
3 m
2 m
0

3 m
2 m
2 m

Tmerge(m) = 12 m + 9



Simplifying the running time

• We don’t need to be exactly correct with the running time of Merge
• We will eventually remove lower order terms anyway
• Let’s simplify the expression a bit:

𝑇𝑚𝑒𝑟𝑔𝑒 𝑚 = 12𝑚 + 9

𝑇𝑚𝑒𝑟𝑔𝑒 𝑚 ≤ 12𝑚 + 9𝑚

𝑇𝑚𝑒𝑟𝑔𝑒 𝑚 ≤ 21𝑚



Merging

We have an idea of the cost of an individual call to merge: 

𝑇 𝑚 ≤ 21𝑚

What else do we need to know to calculate the total time of MergeSort?
1. How many times do we merge in total?
2. What is the size of each merge? (In other words: What is m?)



T(n/2)

T(n/2)

What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(?)

O(1)

T(n) = 2 T(n/2) + O(?) + 4 O(1)
= 2 T(n/2) + O(?)



T(n/2)

T(n/2)

What is the running time of each line?
FUNCTION MergeSort(array)

n = array.length
IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

O(1)

O(1)

O(1)

T(n)

O(n)

O(1)

T(n) = 2 T(n/2) + O(n) + 4 O(1)
= 2 T(n/2) + O(n)



How many times do we call Merge?
Level 0

Level 1

Level 2

Level 3

Level ?

Entire input: size n

size n/2

size n/4

size n/8

size 1



How many times do we call Merge?
Level 0

Level 1

Level 2

Level 3

Level log2(n)

Entire input: size n

size n/2

size n/4

size n/8

size 1
Total Levels: 
log2(n) + 1



Exercise 

How many sub-problems are there at level L? The top 
level is Level 0, the second level is Level 1, and the bottom 
level is Level log2(n)

Answer: 2L

How many elements are there for a given sub-problem 
found in level L?

Answer: n/2L

How many computations are performed at a given level? 
The cost of a Merge was 21m.

8

4 4

2 22 2

1 1 1 1 1 1 1 1

Level 0

Level 1

Level 2

Level log2(n) = 3



Exercise

How many sub-problems are there at level L? The top 
level is Level 0, the second level is Level 1, and the bottom 
level is Level log2(n)

Answer: 2L

How many elements are there for a given sub-problem 
found in level L?

Answer: n/2L

How many computations are performed at a given level? 
The cost of a Merge was 21m.

Answer: 2L 21(n/2L) à 21n
What is the total computational cost of merge sort?

Answer: 21n (log2(n) + 1)

8

4 4

2 22 2

1 1 1 1 1 1 1 1

Level 0

Level 1

Level 2

Level log2(n) = 3



Exercise

How many sub-problems are there at level L? The top 
level is Level 0, the second level is Level 1, and the bottom 
level is Level log2(n)

Answer: 2L

How many elements are there for a given sub-problem 
found in level L?

Answer: n/2L

How many computations are performed at a given level? 
The cost of a Merge was 21m.

Answer: 2L 21(n/2L) à 21n
What is the total computational cost of merge sort?

Answer: 21n (log2(n) + 1)

n

n/2 n/2

n/4 n/4n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1 1 1 1 1 1 1 1 11 1

Level 0

Level 1

Level 2

Level 3

Level log2(n)



Merge Sort

Divide and Conquer
• constantly halving the problem size and then merging

Total running time of roughly 21n log2(n) + 21n

Compared to insertion sort with an average total running time of ½ n2

• For small values of n, insertion sort is better

Which algorithm is better?



Merge Sort 
Verse 

Insertion 
Sort 

Worst-Case

What does this 
plot tell you? 5𝑛!

21𝑛(𝑙𝑜𝑔! 𝑛 + 1)



Merge Sort 
Verse 

Insertion 
Sort 

Worst-Case 21𝑛(𝑙𝑜𝑔! 𝑛 + 1)

5𝑛!



Constants

0.01𝑛!

100𝑛𝑙𝑜𝑔2(𝑛)


