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Outline

Topics and Learning Objectives
• Practice writing loop invariants

Exercise
• Loop Invariant



Extra Materials

• Chapter 2 of Introduction to Algorithms, Third Edition

• https://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-
invariants.html

https://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-invariants.html


Loop Invariant Proofs

• A procedural way to prove the correctness of some code with a loop

• Very similar to inductive proofs for recursive algorithms



ExampleFUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

How do we prove that this 
code sums all values in 

the given array?

Some useful syntax:

• array[start ..= end] is the subarray
• Including array[start], array[end], and everything in between
• Inclusive lower and upper bounds

• array[start ..< end] is the subarray
• Including array[start], excluding array[end], and including everything in between
• Inclusive lower bound, exclusive upper bound



Loop Invariants

A loop invariant is a predicate (a statement that is either true or false) 
with the following properties:

1. It is true upon entering the loop the first time.

2. If it is true upon starting an iteration of the loop, it remains true 
upon starting the next iteration.

3. The loop terminates, and the loop invariant plus the reason that the 
loop terminates gives you the property that you want.

Initialization

Maintenance

Termination



Relation to Induction Proofs

Loop Invariant
• True before entering first loop

• True after executing any 
iteration

• True when loop terminates

Induction
• Prove for the base case

• State/assume inductive 
hypothesis

• Prove inductive step
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How to perform a proof by loop invariant

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change each iteration

2. Show that the loop invariant is true before the loop starts

3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends

Initialization

Maintenance

Termination



Loop Invariant

1. At the start of the iteration with <reference the looping variable>, …
• For example: “index j”

2. The <reference to partial solution> …
• For example: “subarray array[0 ..= j-1] consists of the elements 

originally in array[0 ..= j-1]…”

3. <something about why the partial solution is correct>.
• For example: “In sorted order.”

Using Insertion Sort as example.



Example

Exercise

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change 

each iteration



Example

What would be a good loop 
invariant for proving this procedure?

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change 

each iteration



Example

At the start of the iteration with index i, 
the variable sum is the sum of all values 
in the subarray array[0 ..< i].

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change 

each iteration



Example

1. Initialization
2. Maintenance
3. Termination

At the start of the iteration with index i, 
the variable sum is the sum of all values 
in the subarray array[0 ..< i].

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1



Example

Initialization:
Upon entering the first 
iteration, i = 0.  There are 
no numbers in the subarray 
array[0 ..< i]. The 
sum of no terms is the 
identity for addition (0).

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i, 
the variable sum is the sum of all values 
in the subarray array[0 ..< i].



Example
Maintenance:
Upon entering an iteration with 
index i, assume that sum is equal 
to the sum of all values in the 
subarray array[0 ..< i]:

𝑠𝑢𝑚 =%
!"#

!$%

𝑎𝑟𝑟𝑎𝑦[𝑖]

The current iteration adds 
array[i] to sum and then 
increments i, so that the loop 
invariant holds upon entering the 
next iteration.

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i, 
the variable sum is the sum of all values 
in the subarray array[0 ..< i].



Example

Termination:
The loop terminates with 
i = n.  According to the loop 
invariant, sum is equal to the 
sum of all values in the 
subarray array[0 ..< i]:

𝑠𝑢𝑚 =*
!"#

!$%

𝑎𝑟𝑟𝑎𝑦[𝑖] = *
!"#

&$%

𝑎𝑟𝑟𝑎𝑦[𝑖]

which is the sum of all values 
in the array.

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i, 
the variable sum is the sum of all values 
in the subarray array[0 ..< i].



A more complex example: Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Loop Invariant:
At the start of each iteration of the 
while loop, v.d = delta(s, v) for 
each vertex v in S.
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Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Initialization:
Initially, S = null and so the 
invariant is trivially true

Loop Invariant:
At the start of each iteration of the 
while loop, v.d = delta(s, v) for 
each vertex v in S.
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S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Maintenance:
<long proof by contradiction on 
page 661 of the textbook>

Loop Invariant:
At the start of each iteration of the 
while loop, v.d = delta(s, v) for 
each vertex v in S.



Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Termination:
At termination, Q = null which, 
along with our earlier invariant 
that Q = V – S, implies that S = V. 
Thus, u.d = delta(s, u) for all 
vertices in G.V.

Loop Invariant:
At the start of each iteration of the 
while loop, v.d = delta(s, v) for 
each vertex v in S.


