
Loop Invariants
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Practice writing loop invariants

Exercise
• Loop Invariant

Extra Materials

• Chapter 2 of Introduction to Algorithms, Third Edition

• https://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-
invariants.html

https://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-invariants.html

Loop Invariant Proofs

• A procedural way to prove the correctness of some code with a loop

• Very similar to inductive proofs for recursive algorithms

ExampleFUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

How do we prove that this
code sums all values in

the given array?

Some useful syntax:

• array[start ..= end] is the subarray
• Including array[start], array[end], and everything in between
• Inclusive lower and upper bounds

• array[start ..< end] is the subarray
• Including array[start], excluding array[end], and including everything in between
• Inclusive lower bound, exclusive upper bound

Loop Invariants

A loop invariant is a predicate (a statement that is either true or false)
with the following properties:

1. It is true upon entering the loop the first time.

2. If it is true upon starting an iteration of the loop, it remains true
upon starting the next iteration.

3. The loop terminates, and the loop invariant plus the reason that the
loop terminates gives you the property that you want.

Initialization

Maintenance

Termination

Relation to Induction Proofs

Loop Invariant
• True before entering first loop

• True after executing any
iteration

• True when loop terminates

Induction
• Prove for the base case

• State/assume inductive
hypothesis

• Prove inductive step

Relation to Induction Proofs

Loop Invariant
• True before entering first loop

• True after executing any
iteration

• True when loop terminates

Induction
• Prove for the base case

• State/assume inductive
hypothesis

• Prove inductive step

How to perform a proof by loop invariant

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change each iteration

2. Show that the loop invariant is true before the loop starts

3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends

Initialization

Maintenance

Termination

Loop Invariant

1. At the start of the iteration with <reference the looping variable>, …
• For example: “index j”

2. The <reference to partial solution> …
• For example: “subarray array[0 ..= j-1] consists of the elements

originally in array[0 ..= j-1]…”

3. <something about why the partial solution is correct>.
• For example: “In sorted order.”

Using Insertion Sort as example.

Example

Exercise

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change

each iteration

Example

What would be a good loop
invariant for proving this procedure?

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change

each iteration

Example

At the start of the iteration with index i,
the variable sum is the sum of all values
in the subarray array[0 ..< i].

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

1. State the loop invariant
1. A statement that can be easily proven true or false
2. The statement must reference the purpose of the loop
3. The statement must reference variables that change

each iteration

Example

1. Initialization
2. Maintenance
3. Termination

At the start of the iteration with index i,
the variable sum is the sum of all values
in the subarray array[0 ..< i].

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

Example

Initialization:
Upon entering the first
iteration, i = 0. There are
no numbers in the subarray
array[0 ..< i]. The
sum of no terms is the
identity for addition (0).

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i,
the variable sum is the sum of all values
in the subarray array[0 ..< i].

Example
Maintenance:
Upon entering an iteration with
index i, assume that sum is equal
to the sum of all values in the
subarray array[0 ..< i]:

𝑠𝑢𝑚 =%
!"#

!$%

𝑎𝑟𝑟𝑎𝑦[𝑖]

The current iteration adds
array[i] to sum and then
increments i, so that the loop
invariant holds upon entering the
next iteration.

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i,
the variable sum is the sum of all values
in the subarray array[0 ..< i].

Example

Termination:
The loop terminates with
i = n. According to the loop
invariant, sum is equal to the
sum of all values in the
subarray array[0 ..< i]:

𝑠𝑢𝑚 =*
!"#

!$%

𝑎𝑟𝑟𝑎𝑦[𝑖] = *
!"#

&$%

𝑎𝑟𝑟𝑎𝑦[𝑖]

which is the sum of all values
in the array.

FUNCTION SumArray(array)
sum = 0
i = 0
WHILE i < array.length

sum = sum + array[i]
i = i + 1

At the start of the iteration with index i,
the variable sum is the sum of all values
in the subarray array[0 ..< i].

A more complex example: Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Loop Invariant:
At the start of each iteration of the
while loop, v.d = delta(s, v) for
each vertex v in S.

Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Initialization:
Initially, S = null and so the
invariant is trivially true

Loop Invariant:
At the start of each iteration of the
while loop, v.d = delta(s, v) for
each vertex v in S.

Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Maintenance:
<long proof by contradiction on
page 661 of the textbook>

Loop Invariant:
At the start of each iteration of the
while loop, v.d = delta(s, v) for
each vertex v in S.

Dijkstra’s Algorithm

DIJKSTRA (G, w, s)
S = null
Q = G.V
while Q is not null

u = EXTRACT-MIN(Q)
S = S union {u}
for each vertex v adjacent to u

RELAX(U, v, w)

Termination:
At termination, Q = null which,
along with our earlier invariant
that Q = V – S, implies that S = V.
Thus, u.d = delta(s, u) for all
vertices in G.V.

Loop Invariant:
At the start of each iteration of the
while loop, v.d = delta(s, v) for
each vertex v in S.

