Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss total running time
- Discuss asymptotic running time
- Learn about asymptotic notation

Exercise

Running time

Extra Resources

• Chapter 3: asymptotic notation

Comparing Algorithms and Data Structures

We like to compare algorithms and data structures

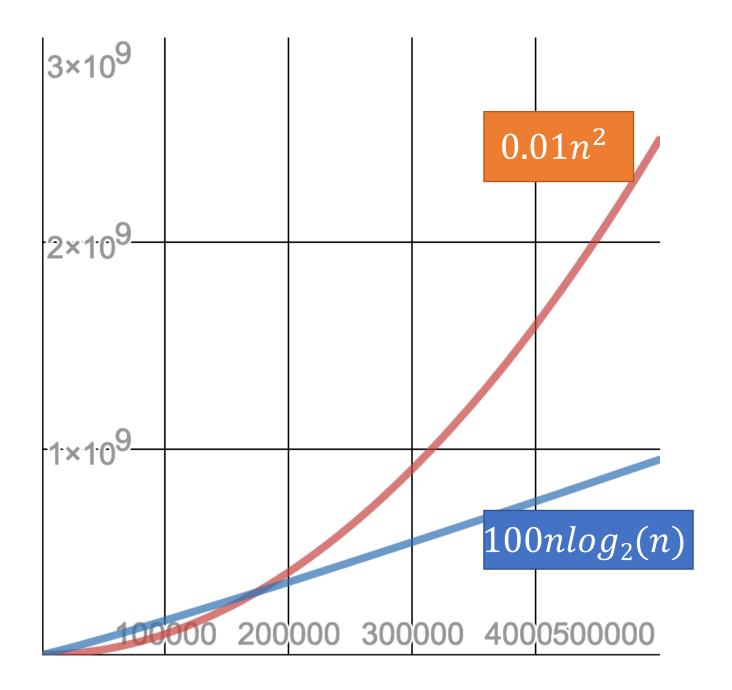
- Speed
- Memory usage

We don't always need to care about little details

We ignore some details anyway

- Data locality
- Differences among operations

Constants



Big-O Example Code (ODS 1.3.3)

```
# function_one has a total running time of 2nlogn + 2n - 250
a = function_one(input_one)

# function_two has a total running time of 3nlogn + 6n + 48
b = function_two(input_two)
```

• The total running time of the code above is:

$$2n \log n + 2n - 250 + 1 + 3n \log n + 6n + 48 + 1$$
$$5n \log n + 8n - 200$$

Big-O Example Math (ODS 1.3.3)

$$5n\log n + 8n - 200$$

- We don't care about most of these details
- We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
- So we say the following

$$5n\log n + 8n - 200 = O(n\log n)$$

Big-O (Asymptotic Running Time)

$$T(n) = O(f(n))$$

If and only if (iff) we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

Write an algorithm (in pseudocode):

What is the total running time?

The land of the total running time? For val In array the total running time? = {Zehm False m/= Zn +

$T(n) \le c f(n)$, where $n \ge n_0$

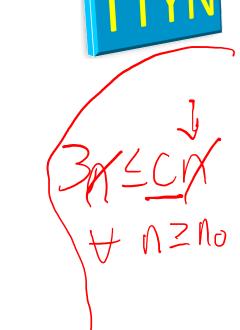
Searching an array for a given number?

What is the asymptotic running time? T(n) = 2n + 1

$$T(n) = O(3)$$

$$T(n) = O(n)$$

$$T(n) \leq c n$$



Search two separate arrays (sequentially) for a given number?

Write an algorithm (in pseudocode): Tunction Tincl Num In 2 What is the total running time? Tunction Tincl Num In 2	TTY
Find Num Carryl, Num) OR) Find Num Carryl, Num) Tin Jac	In+3
n= max (array length, orray length)	
(2h+0)+(2h+0)+(4)+	

$T(n) \le c f(n)$, where $n \ge n_0$

Search two separate arrays (sequentially) for a given number?

What is the asymptotic running time? T(n) = 4n + 3 = O(n)

4n +302 4n + 3n 2 cn

$$3 \leq 3n \rightarrow (n \geq)$$

$$4n+3n \leq Cn$$

$$7/4 \leq C/4$$

Naive

Hash Table > OCn)

Searching two arrays for any common number?


```
Write an algorithm (in pseudocode): What is the total running time?

Tunction Find Common (analytical)
n For vall to array 1
          If Findly arrays, vall (2n+1)
              Return True
   Peturn False T(n) = n + n(2n+1) + 1
= 7n + n + n + 1
```

$T(n) \le c f(n)$, where $n \ge n_0$

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$

$$T(n) \neq O(n)$$

$$\frac{2n^2 + 2n + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n^2 + 2n + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq Cn + n \neq n$$

$$\frac{2n + 2 + 1}{n} \neq n$$

$$\frac{2n + 1}{n} \neq n$$

$T(n) \le c f(n)$, where $n \ge n_0$

Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$

$$T(n) = O(n^{2})$$
 $2n^{2} + 2n + 1 \ge C(n^{2})$
 $2n^{2} + 2n + 1 \ge C(n^{2})$
 $2n^{2} + 2n + 0 \ge 2n^{2} + 2n^{2} + 1n^{2} \le C(n^{2})$
 $4n \ge n_{0}$
 $2n^{2} + 2n + 1 \le 2n^{2} + 2n^{2} + n^{2} \le C(n^{2})$
 $4n \ge n_{0}$
 $4n \le 2n^{2}$
 $4n \le 2n^{2}$
 $4n \le 2n^{2}$
 $4n \le 2n^{2}$
 $4n \ge n_{0}$
 $5n^{2} \le C(n^{2})$
 $5n^{2} \le C(n^{2})$

Write an algorithm (in pseudocode): What is the total running time? Function Find Duplicale (array) ZInlan + ZIn array = Merge Sort (orray) Z For i In [1... carray. height VIN If array bi-13 == array bi 230 ZINIGN +21n +4n41 ZINIAN + 28n +1

$T(n) \le c f(n)$, where $n \ge n_0$

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21nlgn + 25n + 1

$$T(n) = O(n \lg n)$$

$$\frac{21 \text{ Algn} + 25x + 1}{\text{Algn} + 25x + 1} \leq CA + GA + N \geq N_0$$

$$\frac{1}{190} + \frac{1}{190} + \frac{1}{190} \leq C + \frac{1}{190} + \frac{1}{190} \leq C + \frac{1}{190} + \frac{1}{190} \leq C + \frac{1}{190} = \frac{1}$$

$T(n) \le c f(n)$, where $n \ge n_0$

Searching a single array for duplicate numbers?

What is the asymptotic running time? T(n) = 21 nlgn + 25 n + 1 = 0 ($\sqrt{9}$) $\sqrt{2}$) $\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 1 21 + 1 + 1 = C + N Z 25

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Exercise

Big-O Examples

T(n) = O(f(n))

If and only if we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

• Claim:
$$2^{n+10} = O(2^n)$$

Big-O Examples

• Claim: $2^{10n} \neq O(2^n)$

$$\frac{2}{2} \frac{2}{2} \frac{10}{2} \leq \frac{2}{2} \frac{1}{2}$$

$$T(n) = O(f(n))$$

If and only if we can find values for c, $n_0 > 0$, such that

$$T(n) \le c f(n)$$
, where $n \ge n_0$

Note: c, n₀ cannot depend on n

$$2^{100} + O(2^n)$$

Big-O Examples

T(n) = O(f(n))

If and only if we can find values for c, $n_0 > 0$, such that

 $T(n) \le c f(n)$, where $n \ge n_0$

Note: c, n₀ cannot depend on n

• Claim: for every $k \ge 1$, n^k is **not** $O(n^{k-1})$

$$\forall k \geq 1$$
 $n^{k} \neq G(n^{k-1})$
 $n^{k} \leq C(n^{k-1}) \neq n \geq n_{0}$
 $n^{k} \leq C(n^{k-1}) \neq n \geq n_{0}$

(D) Examples

$$T(n) = \Theta(f(n))$$

If and only if we can find values for c_1 , $n_0 > 0$, such that c_1 , $f(n) \le T(n) \le c_2$, f(n), where $n \ge n_0$.

Note: c_1 , c_2 , n_0 cannot depend on n

• Claim: $21n (log_2(n) + 1) = \Theta(nlog_2n)$

Other Notations : T(n) = O(f(n)) if $T(n) \le c f(n)$, where $n \ge n_0$ • Big-O (≤) $T(n) = \Omega(f(n))$ if $T(n) \ge c f(n)$, where $n \ge n_0$ • Big-Omega (≥) $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$ • Theta (= $T(n) \le c_2 f(n)$, where $n \ge n_0$

Other Notations

- Big-O (\leq) : T(n) = O(f(n)) if T(n) \leq c f(n), where n \geq n₀
- little-o (<)

- Big-Omega (\geq) : T(n) = Ω (f(n)) if T(n) \geq c f(n), where n \geq n₀
- Little-omega (>)

© Examples

 $T(n) = \Theta(f(n))$

If and only if we can find values for c, $n_0 > 0$, such that c_1 $f(n) \le T(n) \le c_2$ f(n), where $n \ge n_0$ Note: c_1 , c_2 , n_0 cannot depend on n

• Claim: $21n (log_2(n) + 1) = \Theta(nlog_2n)$

ZInlgn+ZIn < Cznlgn Hnzm

• Examples

2

• Claim: 21n ($\log_2(n) + 1$) = $\Theta(n\log_2 n)$

$$T(n) = \Theta(f(n))$$

If and only if we can find values for c_1 , $n_0 > 0$, such that c_1 $f(n) \le T(n) \le c_2$ f(n), where $n \ge n_0$ Note: c_1 , c_2 , n_0 cannot depend on n

• Examples

 $T(n) = \Theta(f(n))$ If and only if we can find values for c, n > 0, such that $c_1 f(n) \le T(n) \le c_2 f(n)$, where $n \ge n_0$ Note: $c_1, c_2, n_0 \frac{cannot}{depend} \frac{depend}{depend} \frac{depend}{d$

• Claim: $21n (log_2(n) + 1) = \Theta(nlog_2n)$

CINIGN & ZINIGN + ZIN Y NZMO CINIGN & ZINIGN & ZINIGN + ZIN CINIGN & ZIMIGN

C1=21, C2=42, No=2

$$O(f(n))$$
: $T(n) \le c_2 f(n)$

 $c_2 f(n)$

 $\Theta(f(n)): c_1 f(n) \le T(n) \le c_2 f(n)$

T(n)

 $c_1 f(n)$

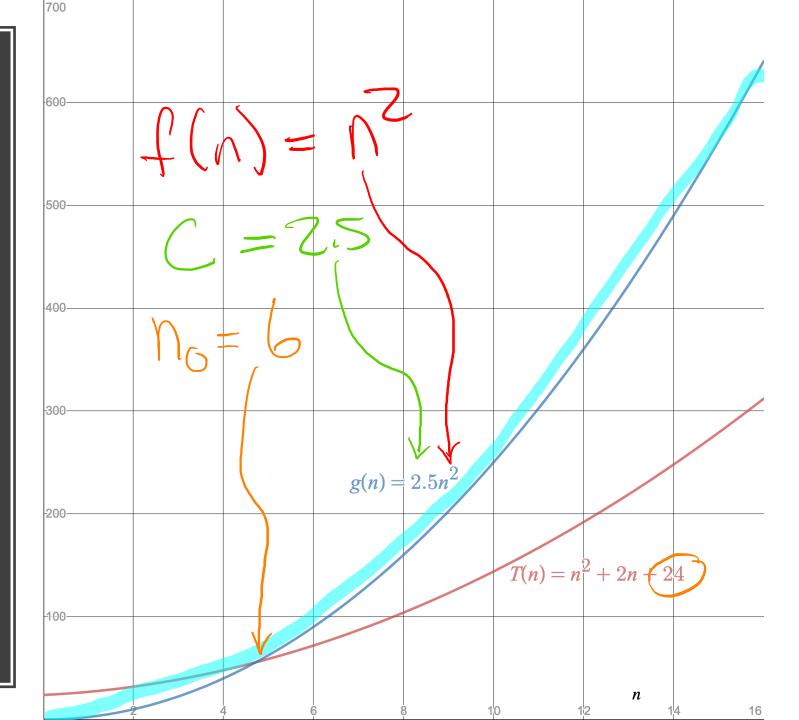
n0

$$\Omega(f(n))$$
: $T(n) \ge c_1 f(n)$

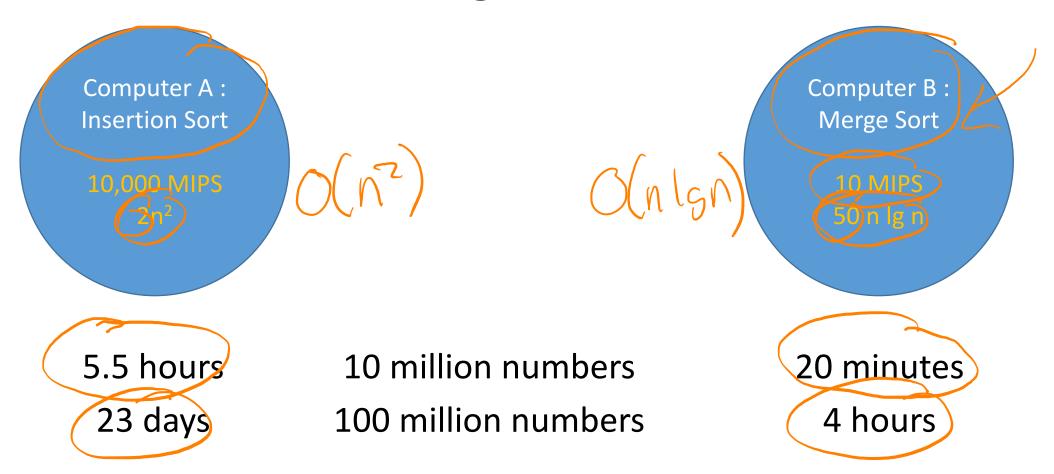
What is f(n)?

What are good values for:

- c 🗠
- n_0



Insertion Sort vs Merge Sort



Simplifying the Comparison

• Why can we remove leading coefficients?

Why can we remove lower order terms?

- They are both insignificant when compared with the growth of the function.
- They both get factored into the constant "c"