
Name: _____________________________________ Name: _____________________________________

Name: _____________________________________ Name: _____________________________________

Algorithms, Running Time of Sets and Lists

Consider the following function:

def count_duplicates(small_list, big_container):
 """Count the number of items in small_list that
 also appear in big_container."""

 total_duplicates = 0

 for item in small_list:
 if item in big_container:
 total_duplicates += 1

 return total_duplicates

Consider the two following uses of the count_duplicates function (r() is a function that returns a random
integer and m and n are the lengths of the two data structures where m is much smaller than n).

small_list = [r() for _ in range(m)]
big_list = [r() for _ in range(n)]
big_set = set(big_list) # Convert the list to a set (hash table)

Run the function with a list
list_total = count_duplicates(small_list, big_list)

Run the function with a set
set_total = count_duplicates(small_list, big_set)

The only differences between these two uses of the count_duplicates function is in the creation of the second
argument (big_list vs big_set). The variable big_list is a list and the variable big_set is a set (a hash
table type data structure).

Answer the following questions while paying particular attention to the if statement in the count_duplicates
function.

(a) How do you check if an object exists in an unsorted list, and what is the asymptotic running time?

(b) How do you check if an object exists in a set (hash table), and what is the asymptotic running time?

(c) What is the asymptotic running time of count_duplicates when it is called with a list?

(d) What is the asymptotic running time of count_duplicates when it is called with a set?

(e) Do you expect the function to run faster the first time or the second time?

