Approximation Algorithms

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss strategies for finding solutions to difficult problems
- Apply an approximation algorithm to an NP-Hard problem

Exercise

- None

Good Enough

NP-Complete

What does it mean if your problem is NP-Complete?

1. It belongs to NP, and
2. It belongs to NP-Hard.

What does it mean to belong to NP?

- We can verify a solution as correct or incorrect in polynomial time.

What does it mean to belong to NP-Hard?

- We do not know an algorithm to solve it in polynomial-time.

So, your problem is NP-Hard...

- This does not mean you cannot solve your problem.
- This does not mean that you cannot get an optimal solution.
- It does mean that you should set your expectations appropriately.
- You are probably not going to accidentally prove that $\mathrm{P}=\mathrm{NP}$.

Strategies

(1. Focus on solving a special case that is tractable

- The general Knapsack problem is NP-Complete, but we solved it by looking at problems where the total capacity W was $\mathrm{O}(\mathrm{nW})$.

1. Solve the problem in exponential time (but faster than brute-force)

- We looked an algorithm for TSP that runs in $O\left(n^{2} 2^{n}\right)$ instead of $O(n!)$

2. Solve the problem using some heuristics

- These algorithms are not guaranteed to give optimal solutions,
- but they are (generally) fast.

The Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

- Input: a complete, undirected graph with non-negative edge costs
- Output: a minimum cost tour (a cycle that visits each vertex once)

Solving the TSP

- There are n ! total possible tours.

Input Size	Brute-Force n !	Exponential O($\left.\mathrm{n}^{2} 2^{\mathrm{n}}\right)$
14	87 billion 178 million ...	~ 3 million
15	1 trillion 307 billion ...	~ 7 million
16	20 trillion 922 billion ...	~ 16 million ...
$\frac{(30)}{n}$	265 nonillion 252 octillion 859 septillion 812 sextillion 191 quintillion 58 quadrillion 636 trillion ...	

Why is TSP so difficult?

Doesn't it seem like it is just a special case of SSSP, with one extra edge back to the start vertex?

Remember our SSSP sub-problems (Bellman-Ford):
For every edge edge budget (FOR num_edges IN [(0) .. = (n))
Let $\left(L_{i j}\right)=$ the length of the shortest path from 1 to j that uses at most i edges
\uparrow

Why is TSP so difficult?

For every edge edge budget (FOR Hum_edges IN [0 . . n])
Let $L_{i j}=$ the length of the shortest path from 1 to j that uses at most i edges

How are they different?

- Subproblems of SSSP do not solve the original TSP problem (SSSP does not require the use of i edges).
- SSSP doesn't enforce that we cannot visit a vertex more than once.
- If we change SSSP to enforce the use of i edges with no repeats, we lose the ability to solve larger problems from smaller problems.

Dynamic Programming for TSP

For every destination j in $\{1,2, \ldots, n\}$, and
for every subset S of $\{1,2, \ldots, n\}$
$L_{s, j}=$ the minimum length of a path from 1 to j that visits all of the vertices in S

How does this improve on brute-force?

- It does not care about the order in which we visit the vertices in S .
- But, there are still an exponential number of choices for $s \rightarrow O\left(2^{n}\right)$

Optimal Substructure Lemma

- Let P be a shortest path from 1 to j that visits S.
- If the last hopof P is (k, j)
- Then P^{\prime} is the shortest path from 1 to k

$$
L_{i, j}=\min _{k \in S, k \neq j} L_{L S-\{j\}, k}+C_{k j}
$$

What if we don't need the optimal path? Just one that is "good enough"?

Local Search Heuristic for Hard Problems

FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

```
bestSolution = solutionFcn()
bestPerformance = evaluationFcn(bestSolution)
FOR trial IN [O ..< numTrials]
    newSolution = solutionFcn(bestSolution)
    newPerformance = evaluationFcn(newSolution)
```

 IF newPerformance > bestPerformance
 bestPerformance \(=\) newPerformance
 bestSolution = newSolution
 RETURN bestSolution

Local Search

- Let X be a set of candidate solutions to a problem
- For example, let it be all possible tours of a graph

The key to local search to to define a neighborhood:

- For each x in X, specify which y in X are its "neighbors"

Local Search

- Let X be a set of candidate solutions to a problem
- For example, let it be all possible tours of a graph

The key to local search to to define a neighborhood:

- For each x in X, specify which y in X are its "neighbors"

Local Search

Local Search

Local Search

Local Search

Local Search

Local Search

Neighborhood for TSP

Let's say that two tours are neighbors if they differ by a minimal number of edges.
FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

$$
\text { X bestSolution }=\text { solutionFen()e any permutstion of the }
$$

bestPerformance = evaluationFcn (bestSolution)
citles

N

The Max-Cut Problem

- Input: an undirected graph
- Output: a cut (A, B) that maximizes the number of crossing edges
- Reminder: a cut is a partition of the vertices into two non-empty sets
- How many possible cuts are there?

It turns out that:

- The min-cut problem is tractable (we have a polynomial time algorithm)
- The max-cut problem is NP-Complete

How many edges cross the max-cut?
a. 4
b. 6
c. 8
d. 10

How many edges cross the max-cut?
a. 4
b. 6
c. 8
d. 10

Local Search for Max-Cut

Notation: for a cut (A, B) and a vertex v :

- $C_{v}(A, B)=$ the number of edges incident on v that cross (A, B)
- $D_{v}(A, B)=$ the number of edges incident on v that don't cross (A, B)

$$
\begin{aligned}
& C_{v}=2 \\
& D_{v}=3
\end{aligned}
$$

Local Search for Max-Cut

1. Let (A, B) be some arbitrary cut of the graph G
2. While there is a vertex v with $\overparen{D_{v}}(A, B)>C_{v}(A, B)$
3. move v to the other side of the cut
4. Return the final cut (A, B)

About this algorithm

- This algorithm runs in polynomial time (quadratic)
- This algorithm is not guaranteed to give the optimal cut
- This algorithm outputs a cut which is at least 50% of the maximum possible

About Local Search Algorithms

How do you pick the initial solution?

- Use a heuristic
- "this type of solution is usually a good place to start"
- Choose the neighbor that vields the most improvement
- How do you define the neighborhood?

Can you think of some simple techniques for improving local search?
Which superior neighbor should you choose?

- Use a heuristic ${ }^{\ell}$
- Choose the neighbor at random
- Run the algorithm multiple times with some random choices!
- Independent trials.
- Combine good solutions.

