Approximation Algorithms

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

v
e Discuss strategies for finding solutions to difficult problems

* Apply an approximation algorithm to an NP-Hard problem
N

* None 6®A EV\O%\/\

NP-Complete

What does it mean if your problem is NP-Complete?
1. It belongs to NP, and
2. It belongs to NP-Hard.

What does it mean to belong to NP?

* We can a solution as correct or incorrect in polynomial time.

What does it mean to belong to NP-Hard?
* We do not know an algorithm to it in polynomial-time.

So, your problem is NP-Hard...

* This does nhot mean you cannot solve your problem.

* This does nhot mean that you cannot get an optimal solution.

* It does mean that you should set your expectations appropriately.

* You are probably not going to accidentally prove that P = NP.

Strategies

[1. Focus on solving a special case that is tractable

* The general Knapsack problem is NP-Complete, but we solved it by looking at
problems where the total capacity W was O(nW).

. 1. Solve the problem in exponential time (but faster than brute-force)
* We looked an algorithm for TSP that runs in O(n?2") instead of O(n!)

7>@)Solve the problem using some heuristics

* These algorithms are not guaranteed to give optimal solutions,
* but they are (generally)

The Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what
is the shortest possible route that visits each city exactly once and
returns to the origin city?

* Input: a , undirected graph with non-negative edge costs

e Qutput: a minimum cost tour (a cycle that visits each vertex once)

J

Solving the TSP

* There are n! total possible tours.

87 billion 178 million .. ~ 3 million
15 1 trillion 307 billion ... ~ 7 million
16 20 trillion 922 billion ... ~ 16 million ...
@ 265 nonillion 252 octillion ~ 966 billion 367 million ...
859 septillion 812 sextillion - —
191 quintillion 58 quadrillion Very/ (QY\ﬁ

636 trillion ... Lime

Why is TSP so difficult?

Doesn’t it seem like it is just a special case of SSSP, with one extra edge
back to the start vertex?

, (\Q@O\M
Remember our SSSP sub-problems (Bellman-Ford):
/ cycleS
For every edge edge budget (FOR num_edges IN |@ = @)
Letgj the length of the shortest path from 1 to j that uses at
edges —

)

00—
Why is TSP so difficult?
@_/

For every edge edge budget (FOR @ IN [0 ..= n])

Let L;; = the length of the shortest path from 1 to j that uses at
most i edges

How are they different?

e Subproblems of S lve the original TSP problem (SSSP
does not fequire the use of i edges).

e SSSP doesn’t enforce that we cannot visit a vertex more than once.

* If we change SSSP to enforce the use of i edges with no repeats, we
lose the ability to solve larger problems from smaller problems.

Dynamic Programming for TSP

For every destination jin {1, 2, ..., n}, and
for every subset S of {1, 2, ..., n}

L;; = the minimum length of a path from 1 to j that visits all
of the vertices in S

How does this improve on brute-force?
|t does not care about the order in which we visit the vertices in S.

e But, there are still an exponential number of choices fot.S =2 O(2")

* Then ' is the shortest path from 1 to k

What if we don’t need the optimal path?
Just one that is “good enough”?

Local Search Heuristic for
Hard Problems

FUNCTION LocalSearch (numTrials, solutionFcn, evaluationFcn)
bestSolution = solutionFcn ()

bestPerformance = evaluationFcn (bestSolution)

FOR trial IN [0 ..< numTrials]
newSolution = solutionFcn (bestSolution)

newPerformance = evaluationFcn (newSolution)

IF newPerformance > bestPerformance

bestPerformance = newPerformance

bestSolution = newSolution

RETURN bestSolution

_—0O
Local Search N

)

\"L

* Let X be a set of candidate solutions to a problem
* For example, let it be all possible tours of a grap

The key to local search to to define a neighborhood: o
* For each xin X, specify which v in X are its “neighbors” M

Local Search

* Let X be a set of candidate solutions to a problem
* For example, let it be all possible tours of a graph

The key to local search to to define a neighborhood:
* For each xin X, specify which v in X are its “neighbors”

h
O
—
qe)
QL
V)
(O
O
@)
—1

Local Search

Local Optimum

Local Search

Local Search

Local Search

Local Search

B

‘ ocal Optimupr

Neighborhood for TSP

(— .

(O—C—

Let’s say that two tours are neighbors if they differ by a minimal
number of edges. —

FUNCTION LocalSearch (numTrials, solutionFcn, evaluationFcn)

HLﬁbestSolution = solutionFcn (&2 C“qV/ IIfCW\ﬁFﬂ77F\ CSQ? (>
<EE%;Performance = evaluatlonFcn(bestSolutlon) d (S

& CC)V‘«P\}‘C AYO\N

CcO

A(FOR trial IN [0 ..< numTrials]
Qﬁcpﬂé\ newSolutloﬁyL solutionFcn (bestSolution)
/7

C
q@aw newPerformance = evaluationFcn (newSolution)

IF newPerformance > bestPerformance

bestPerformance = newPerformance

bestSolution = newSolution

RETURN bestSolu

The Max-Cut Problem

* Input: an undirected graph

e Output: a cut (A,B) that maximizes the number of crossing edges

 Reminder: a cut is a partition of the vertices into two non-empty sets

* How many possible cuts are there?

It turns out that:

* The min-cut problem is tractable (we have a polynomial time algorithm)
* The max-cut problem is NP-Complete

How many edges cross ‘

the max-cut?

d.10

a.4
b.6
c.8

How many edges cross
the max-cut?

a.4
b.6
C.3
d.10

Local Search for Max-Cut

Notation: for a cut (A, B) and a vertex v:
* C,(A,B) =the number of edges incident on v that cross (A,B)

* D,(A,B) = the number of edges incident on v that don’t cross (A,B)

O O
<
i

Local Search for Max-Cut

1. Let (A,B) be some arbitrary cut of the graph G

2. While there is a vertex v with D, (A,B))>

1. move v to the other side of the cut

—

@turn the final cut (A,B)

About this algorithm
V/

* This algorithm runs in polynomial time (quadratic)

* This algorithm is not guaranteed to give the optimal cut

* This algorithm outputs a cut which is 50% of the maximum
possible

About Local Search Algorithms

How do you pick the initial solution? ¢ Choose the neighbor tha
e Use 3 heuristic most Improvement

e “this type of solution is usually a} * How do you define the
Can you think of some simple

od + neighborhood?
% Use a random choice
techniques for improving local search?

X\r/‘gg:?egpuperlor neighbor should you Run the algorithm muItipIetlm/es\»
: J me random choices!

% . U;e a hel:\r'St'C. " ; * Independent trials.
Choose the neighbor at random . Combine solutions.

Goimdent-Tree Cpliniaher

