Reductions

https://cs.pomona.edu/classes/cs140/

https://adriann.github.io/npc/npc.html

Outline

Topics and Learning Objectives

- Discuss the process of reducing one problem to another

Exercise

- None

Quick check: does $\lg (n) \in P$?

\qquad

Reduction

- Instead of taking the time to mathematically prove that some algorithm/problem belongs to a certain class, we can take a shortcut.
- We can put a problem in a specific class by looking at its relative difficulty.
- [Some Problem] is as hard as [Some Other Problem].
- "The decision TSP Problem is as hard as the Hamiltonian Cycle Problem, which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete in this case since we can verify it with a polynomial time algorithm)"

Complexity Comparisons

If you want to show that problem A is "easy", then... you show how to solve it by turning it into a known "easy" problem B.

If you want to show that problem A is "hard", then... you show how it can be used to solve a known "hard" problem B.

These are called reductions.
https://adriann.github.io/npc/npc.html

A reduction involves two different problems

We can reduce problem A to problem B if

- We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B and
- We have a polynomial time algorithm for converting an output of problem B into an output of problem A

Must take only a polynomial amount of time

A reduction involves two different problems

We can reduce problem A to problem B if

- We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B and
- We have a polynomial time algorithm for converting an output of problem B into an output of problem A

If we can perform a reduction, then we can say things like

- If B is in P then A is in P
- If B is in NP-Complete then A is in NP-Complete
- B is at least as hard as A (though B might be much harder-you can always convert a problem into something that takes way more work)

Reduction Example

- We can do better than the Floyd-Warshall algorithm $O\left(n^{3}\right)$ for sparse graphs (even with negative edges).
- For example, a clever trick reduces the all-pairs shortest path problem to one invocation of the Bellman-Ford algorithm followed by $\mathrm{n}-1$ invocations of Dijkstra's algorithm.
- This reduction, which is called Johnson's algorithm, runs in $\mathrm{O}(\mathrm{mn})+(n-1) \cdot \mathrm{O}(m \log n)=O(m n \log n)$.
- This is subcubic in n except when m is very close to quadratic in n.

John's All-Pairs Shortest Path Algorithm

Finding the Minimum Element

This is making the problem take more work than needed... But the reduction is still possible.

Reduction for NP-Complete

- Given a new problem (and algorithm) called $P_{\text {new }}$
- Let's say we have an algorithm (potentially sub-optimal) to solve it, but we don't know to what class it belongs.
- We guess that (our Theorem)

$$
\begin{aligned}
& \text { new problem } \\
& \text { Problem } P_{\text {new }} \text { is at least as hard as problem } P_{\text {known }}
\end{aligned}
$$

- Reduce $P_{\text {known }}$ to $P_{\text {new }}\left(\mathrm{P}_{\text {KNOWN }} \leq_{p} \mathrm{P}_{\mathrm{NEW}}\right)$
- Solve $P_{\text {known }}$ using a polynomial number of calls to the algorithm for $P_{\text {new }}$
- Reduce the harder/known known problem to our new problem
- In doing say we can say that we've either found a more efficient solution to $P_{\text {known }}$, or we've proved that $P_{\text {new }}$ is also hard

Example Reduction (Reduce $P_{\text {known }}$ to $P_{\text {new }}$)

Prove two algorithms belong to the same class

$P_{\text {known }}$ is the all-pairs shortest path problem

$P_{\text {new }}$ is a new method for computing the shortest path from a start vertex to all other vertices
Reduce $P_{\text {known }}$ to $P_{\text {new }}$

Examples of Reductions

Reduce median selection to sorting.

- Finding the median value of an array of numbers is as hard as sorting the number and sorting the number can be solved in polynomial-time.
- Note: finding the median turns our to be easier than comparison-based sorting (O(n))

Reduce cycle detection to DFS

- Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in polynomial-time.
- This is related to Kruskal's minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path

- Computing all pairs shortest paths is as hard as computing the shortest path from one node to every other node n times, which can be done in polynomial time.
- Invoke polynomial time algorithm " n times" is still polynomial time (just increase exponent by 1).

Full Reduction Example

The S-Independent Set Problem

- Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

Full Reduction Example

The S-Independent Set Problem

- Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

Full Reduction Example

The k-Clique Problem

- Given a graph G and a number k , is there a set of nodes of size k in G such that all nodes are directly connected with one another?

Full Reduction Example

The k-Clique Problem

- Given a graph G and a number k , is there a set of nodes of size k in G such that all nodes are directly connected with one another?

Full Reduction Example

The k-Clique Problem

- Given a graph G and a number k , is there a set of nodes of size k in G such that all nodes are directly connected with one another?

Full Reduction Example

The k-Clique Problem

- Given a graph G and a number k , is there a set of nodes of size k in G such that all nodes are directly connected with one another?

Full Reduction Example

The S-Independent Set Problem

- Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

The k-Clique Problem

- Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The k-Clique Problem

Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don't know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use $\underline{S-I n d e p e n d e n t ~ S e t ~ t o ~ f i n d ~ t h e ~ c o m p u t a t i o n a l ~ c l a s s i f i c a t i o n ~ o f ~} \underline{k-C l i q u e ? ~}$ Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S -Independent Set.

Reduce S-Independent Set to k-Clique

G

Let $S=4$, and thus $k=4$

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

G

Let $S=4$, and thus $k=4$

H

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

G

Let $S=4$, and thus $k=4$

H

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

G

Let $S=4$, and thus $k=4$

H

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

G

Let $S=4$, and thus $k=4$

H

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

These 4 nodes comprise a size 4 clique of H ; return true

We want to find the SIndependent set of G

G has an S -Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G .

These 4 nodes comprise a size 4 independent set of G; return true

G

Let $S=4$, and thus $\mathrm{k}=4$

These 4 nodes comprise a size 4 clique of H ; return true

We want to find the SIndependent set of G

G has an S-Independent set if and only if H has a k-Clique (we're not going to prove this)

Let's instead find the k-Clique of $\mathrm{H} .(\mathrm{k}=\mathrm{S})$

Where H is the complement of G.

Reduce S-Independent Set to k-Clique

New Algorithm for S-Independent Set

Since the S-Independent Set Problem can be reduced to the The k-Clique Problem, and the S-Independent Set Problem is NP-Complete, then the k-Clique Problem is also NP-Complete.

Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The k-Clique Problem

Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don't know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use $\underline{S-I n d e p e n d e n t ~ S e t ~ t o ~ f i n d ~ t h e ~ c o m p u t a t i o n a l ~ c l a s s i f i c a t i o n ~ o f ~} \underline{k-C l i q u e ? ~}$ Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S -Independent Set.

Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ by any known process

1. First prove that X is in $N P$ (it can be verified in polynomial time)
2. Next prove that X is NP-Hard
3. Reduce some known NP-Complete or NP-Hard problem Y to X
4. This implies that any and all NP-Complete problems can be reduced to X
5. All NP-Complete problems have been reduced to another in an interconnected web (the original problem is known as 3SAT)

3-SAT Example
\qquad
\qquad
\qquad 3-SAT Example 3-SAT Example 3-SAT Example

3-SAT Example

3-SAT Example

