
Reductions
https://cs.pomona.edu/classes/cs140/

https://adriann.github.io/npc/npc.html

https://cs.pomona.edu/classes/cs140/


Outline

Topics and Learning Objectives
• Discuss the process of reducing one problem to another

Exercise
• None



Quick check: does lg 𝑛 ∈ 𝑃?



Reduction

• Instead of taking the time to mathematically prove that some 
algorithm/problem belongs to a certain class, we can take a shortcut.

• We can put a problem in a specific class by looking at its relative difficulty.

• [Some Problem] is as hard as [Some Other Problem].

• “The decision TSP Problem is as hard as the Hamiltonian Cycle Problem, 
which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete 
in this case since we can verify it with a polynomial time algorithm)”



Complexity Comparisons

If you want to show that problem A is “easy”, then…
you show how to solve it by turning it into a known “easy” problem B. 

If you want to show that problem A is “hard”, then…
you show how it can be used to solve a known “hard” problem B.

These are called reductions.



https://adriann.github.io/npc/npc.html



https://adriann.github.io/npc/npc.html



https://adriann.github.io/npc/npc.html



https://adriann.github.io/npc/npc.html



A reduction involves two different problems

We can reduce problem A to problem B if
• We have a polynomial time algorithm for converting an input to 

problem A into an equivalent input for problem B and
• We have a polynomial time algorithm for converting an output of 

problem B into an output of problem A

Instance
of
A

Solution
to
A

Transform
from A

to B

Transform
from B

to A

Must take only a polynomial amount of time



A reduction involves two different problems

We can reduce problem A to problem B if
• We have a polynomial time algorithm for converting an input to problem A

into an equivalent input for problem B and
• We have a polynomial time algorithm for converting an output of problem 

B into an output of problem A

If we can perform a reduction, then we can say things like
• If B is in P then A is in P
• If B is in NP-Complete then A is in NP-Complete
• B is at least as hard as A (though B might be much harder—you can always 

convert a problem into something that takes way more work)



Reduction Example

• We can do better than the Floyd-Warshall algorithm O(n3) for sparse 
graphs (even with negative edges).

• For example, a clever trick reduces the all-pairs shortest path problem to 
one invocation of the Bellman-Ford algorithm followed by n - 1 invocations 
of Dijkstra’s algorithm. 

• This reduction, which is called Johnson’s algorithm, runs in 
O(mn) + (n - 1) · O(m log n) = O(mn log n). 

• This is subcubic in n except when m is very close to quadratic in n. 



John’s All-Pairs Shortest Path Algorithm

Instance
of
A

Solution
to
A

Transform
from A

to B

Transform
from B

to A

Must take only a polynomial amount of time

A Graph
All-Pairs of 

Shortest Paths

one invocation of the Bellman-Ford 
algorithm followed by n - 1 invocations 

of Dijkstra’s algorithm



Finding the Minimum Element

Instance
of
A

Solution
to
A

Transform
from A

to B

Transform
from B

to A

Must take only a polynomial amount of time

An Array
Minimum 
Element

Sort the array and return the item at 
index 0

This is making the problem take more work 
than needed... But the reduction is still 

possible.



Reduction for NP-Complete

• Given a new problem (and algorithm) called Pnew

• Let’s say we have an algorithm (potentially sub-optimal) to solve it, but we 
don’t know to what class it belongs.

• We guess that (our Theorem)

Problem Pnew is at least as hard as problem Pknown

• Reduce Pknown to Pnew (P!"#$" ≤! P"%$)
• Solve Pknown using a polynomial number of calls to the algorithm for Pnew
• Reduce the harder/known known problem to our new problem
• In doing say we can say that we’ve either found a more efficient solution to Pknown, or 

we’ve proved that Pnew is also hard

new problem already proven to be in NP-Complete



Example Reduction (Reduce Pknown to Pnew)

Instance
of

Pknown

Solution
to

Pknown

Instance
of
Pnew

Transform
to
Pnew

Solve
Instance of

Pnew

Transform
to

Pknown

Solution
to
Pnew

Must take only a polynomial amount of time

Our new Algorithm for Pnew

This is a new Algorithm for Pknown
and we might already know that 
Pknown is NP-Hard, for example

WE ALREADY PROVED THE CHARACTERISTICS OF Pknown SO, WE MUST 
HAVE FOUND A NEW WAY TO IMPLEMENT THE SAME THING USING Pnew



Prove two algorithms belong to the same class

Instance
of

Pknown

Solution
to

Pknown

Instance
of
Pnew

Transform
to
Pnew

Solve
Instance of

Pnew

Transform
to

Pknown

Solution
to
Pnew

Must take only a polynomial amount of time

New Algorithm for Pknown

Pknown is the all-pairs shortest path problem

Pnew is a new method for computing the shortest path from a start vertex to all other vertices

Reduce Pknown to Pnew

Our new Algorithm for Pnew



Examples of Reductions

Reduce median selection to sorting.
• Finding the median value of an array of numbers is as hard as sorting the number and sorting the 

number can be solved in polynomial-time.
• Note: finding the median turns our to be easier than comparison-based sorting (O(n))

Reduce cycle detection to DFS
• Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in 

polynomial-time.
• This is related to Kruskal’s minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path
• Computing all pairs shortest paths is as hard as computing the shortest path from one node to 

every other node n times, which can be done in polynomial time.
• Invoke polynomial time algorithm “n times” is still polynomial time (just increase exponent by 1).



Full Reduction Example

The S-Independent Set Problem
• Given a graph G and a number S, is there a set of nodes of size S in G

such that no two nodes in the set are directly connected in G (they 
are independent of each other)?

G S = 3



Full Reduction Example

The S-Independent Set Problem
• Given a graph G and a number S, is there a set of nodes of size S in G

such that no two nodes in the set are directly connected in G (they 
are independent of each other)?

G S = 3



Full Reduction Example

The k-Clique Problem
• Given a graph G and a number k, is there a set of nodes of size k in G 

such that all nodes are directly connected with one another?

1 3 5 7

2 4 6 8

G k = 4



Full Reduction Example

The k-Clique Problem
• Given a graph G and a number k, is there a set of nodes of size k in G 

such that all nodes are directly connected with one another?

1 3 5 7

4 8

G k = 4



Full Reduction Example

The k-Clique Problem
• Given a graph G and a number k, is there a set of nodes of size k in G 

such that all nodes are directly connected with one another?

1 3 5 7

8

G k = 4



Full Reduction Example

The k-Clique Problem
• Given a graph G and a number k, is there a set of nodes of size k in G 

such that all nodes are directly connected with one another?

1 3 5 7
G k = 4



Full Reduction Example

The S-Independent Set Problem
• Given a graph G and a number S, is there a set of nodes of size S in G

such that no two nodes in the set are directly connected in G (they 
are independent of each other)?

The k-Clique Problem
• Given a graph G and a number k, is there a set of nodes of size k in G 

such that all nodes are directly connected with one another?



Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, 
is there a set of nodes of size S in 
G such that no two nodes in the 
set are directly connected in G?

The k-Clique Problem
Given a graph G and a number k, 
is there a set of nodes of size k in 
G such that all nodes are directly 
connected with one another?

We don’t know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use S-Independent Set to find the computational classification of k-Clique?
Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S-Independent Set.

Known New



Reduce S-Independent Set to k-Clique

Instance
of

S-Independent
Set

Solution
to

S-Independent
Set

Instance
of

k-Clique

Transform
to

k-Clique

Solve
Instance of

k-Clique

Transform
to

S-Independent
Set

Solution
to

k-Clique

Must take only a polynomial amount of time

New Algorithm for S-Independent Set 

Pknown Pnew Pnew Pnew Pnew Pnew Pknown



G

H

We want to find the S-
Independent set of G

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4
G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4
G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4
G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4
G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4
G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4

These 4 nodes comprise a size 4 clique of H; return true

G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 



G

H

We want to find the S-
Independent set of G

Let S = 4, and thus k = 4

These 4 nodes comprise a size 4 independent set of G; return true

G has an S-Independent set if 
and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the 
k-Clique of H. (k = S)

Where H is the 
complement of G. 

These 4 nodes comprise a size 4 clique of H; return true



Reduce S-Independent Set to k-Clique

Instance
of

S-Independent
Set

Solution
to

S-Independent
Set

Instance
of

k-Clique

Transform
to

k-Clique

Solve
Instance of

k-Clique

Transform
to

S-Independent
Set

Solution
to

k-Clique

Must take only a polynomial amount of time

New Algorithm for S-Independent Set 

Since the S-Independent Set Problem can be reduced to the 
The k-Clique Problem, and the S-Independent Set Problem is 
NP-Complete, then the k-Clique Problem is also NP-Complete.



Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, 
is there a set of nodes of size S in 
G such that no two nodes in the 
set are directly connected in G?

The k-Clique Problem
Given a graph G and a number k, 
is there a set of nodes of size k in 
G such that all nodes are directly 
connected with one another?

We don’t know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use S-Independent Set to find the computational classification of k-Clique?
Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S-Independent Set.

Known New



Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in O(nk) by any 
known process

1. First prove that X is in NP (it can be verified in polynomial time)

2. Next prove that X is NP-Hard
1. Reduce some known NP-Complete or NP-Hard problem Y to X
2. This implies that any and all NP-Complete problems can be reduced to X
3. All NP-Complete problems have been reduced to another in an 

interconnected web (the original problem is known as 3SAT)



3-SAT Example


