Reductions

https://cs.pomona.edu/classes/cs140/

https://adriann.github.io/npc/npc.html

https://cs.pomona.edu/classes/cs140/

Outline

—

* Discuss the process of reducing one problem to another

* None

Quick check: does Ig(n) € P?

Reduction

* |Instead of taking the time to mathematically prove that some
algorithm/problem belongs to a certain class, we can take a shortcut.

* We can put a problem in a specific class by looking at its difficulty.
° []is as hard as |].
* “The decision TSP Problem is as hard as the Hamiltonian Cycle Problem,

which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete
in this case since we can verify it with a polynomial time algorithm)”

Complexity Comparisons

If you want to show that is “easy”, then...
you show how to solve it by turning it into a known “easy”

If you want to show that is “hard”, then...
you show how it can be used to solve a known “hard”

These are called reductions.

https://adriann.github.io/npc/npc.html

https://adriann.github.io/npc/npc.html

Tmsaer,

DIRECTED ELIMINATION ORDERING INDUCED CONNECTED SUBGRAPH WITH PROPERTY PI INDUCED PATH EDGE SUBGRAFH

Yannakakis Rose Tarjan Yannakakis Yannakakis
1978 1978 1978 1978

3-SATISFIABILITY ;=

https://adriann.github.io/npc/npc.html

[UM MAXIMAL MATCHING UNICONNECTED SUBGRAFPH HAMILTONIAN PATH PATH DISTINGUISHERS FEEDBACK ARC SET <

Karp Yannakakis Yannakakis Gavril Maheshwari Maheshwari Karp Karp
1972 1978 1978 1976 1976 1972 1972

IBERING MULTIPLE CHOICE MATCHING , @

https://adriann.github.io/npc/npc.html

TRAVELING SALESMAN
(triangle inequality)

MINIMUM K-CONNECTED SUBEGRAFH HAMILTONIAN COMPLETION

Garey Graham Johnson
1976

UNDIRECTED HAMILTONIAN CIRCUIT

e

A reduction involves two different problems

We can reduce problem A to problem B if

* We have a polynomial time algorithm for converting an input to
problem A into an equivalent input for problem B and

* We have a polynomial time algorithm for converting an output of
problem B into an output of problem

Instance Transform Transform Solution
of —» from —> —>» from — > to
to to

\ /
—~

Must take only a polynomial amount of time

A reduction involves two different problems

We can reduce problem A to problem B if

* We have a polynomial time algorithm for converting an input to problem
into an equivalent input for problem B and

* We have a polynomial time algorithm for converting an output of problem
into an output of problem

If we can perform a reduction, then we can say things like
e [fBisinPthen AisinP
* If B isin NP-Complete then A is in NP-Complete

is at least as hard as A (though B might be much harder—Kou can always
convert a problem into something that takes way more work)

Reduction Example

* We can do better than the Floyd-Warshall algorithm O(n3) for sparse
graphs (even with negative edges).

* For example, a clever trick the all-pairs shortest path problem to
one invocation of the Bellman-Ford algorithm followed by n - 1 invocations
of Dijkstra’s algorithm.

* This reduction, which is called Johnson’s algorithm, runs in
O(mn) +(n-1) - O(m log n) =O0(mn log n).

* This is subcubic in n except when m is very close to quadratic in n.

John’s All-Pairs Shortest Path Algorithm

'”St:fnce Trfrgsr;“m one invocation of the Bellman-Ford Tr?rzsr;mm 50';‘5‘0”
T to — > algorithm followed by n - 1 invocations — to B

of Dijkstra’s algorithm

All-Pairs of
A Graph Shortest Paths

Must take only a polynomial amount of time

Finding the Minimum Element

This is making the problem take more work
than needed... But the reduction is still

possible.
Instance Transform . Transform Solution
of from Sort the array and return the item at from o
— > —> . —> — >
to index O to
Minimum
An Array Element

\/

Must take only a polynomial amount of time

Reduction for NP-Complete

* Given a new problem (and algorithm) called

* Let’s say we have an algorithm (potentially sub-optimal) to solve it, but we
don’t know to what class it belongs.

* We guess that (our Theorem)

new problem already proven to be in NP-Complete

Problem is at least as hard as problem

* Reduce to (Pxnown <p Pygw)

* Solve using a polynomial number of calls to the algorithm for
* Reduce the harder/known known problem to our new problem

* In doing say we can say that we’ve either found a more efficient solution to , or
we’ve proved that is also hard

Example Reduction (Reduce

Instance
of

Transform Instance

to

— of

T

Our new Algorithm for

Solve

— > Instance of [——

Solution
to

to

Transform

—* to

/

This is a new Algorithm for

\/

Must take only a polynomial amount of time

Solution
to

and we might already know that
is NP-Hard, for example

WE ALREADY PROVED THE CHARACTERISTICS OF
HAVE FOUND A NEW WAY TO IMPLEMENT THE SAME THING USING

SO, WE MUST

Prove two algorithms belong to the same class

is the all-pairs shortest path problem

is a new method for computing the shortest path from a start vertex to all other vertices

Reduce to
Instance Transform
of — to

—

Instance
of

T~

Our new Algorithm for

e

Solve
Instance of

>

Solution
to

—»

Transform
to

e

\/ New Algorithm for

Must take only a polynomial amount of time

Solution
to

Examples of Reductions

Reduce median selection to sorting.

* Finding the median value of an arraY of numbers is as hard as sorting the number and sorting the
number can be solved in polynomial-time.

Reduce cycle detection to DFS

* Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in
polynomial-time.

* This is related to Kruskal’s minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path

* Computing all pairs shortest paths is as hard as computing the shortest path from one node to
every other node n times, which can be done in polynomial time.

* Invoke polynomial time algorithm “n times” is still polynomial time (just increase exponent by 1).

Full Reduction Example

The S-Independent Set Problem

* Given a graph G and a number S, is there a set of nodes of size S in
such that no two nodes in the set are directly connected in G (they
are independent of each other)?

Full Reduction Example

The S-Independent Set Problem

* Given a graph G and a number S, is there a set of nodes of size S in
such that no two nodes in the set are directly connected in G (they
are independent of each other)?

Full Reduction Example

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?

Full Reduction Example

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?

Full Reduction Example

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?

Full Reduction Example

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?

=4

Full Reduction Example

The S-Independent Set Problem

* Given a graph G and a number S, is there a set of nodes of size S in
such that no two nodes in the set are directly connected in G (they

are independent of each other)?

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?

Reduce S-Independent Set to «-Clique

Known New

The S-Independent Set Problem The -Clique Problem

Given a graph G and a number S, Given a graph G and a number &,

is there a set of nodes of size S in is there a set of nodes of size k in
such that no two nodes in the G such that all nodes are directly

set are directly connected in G? connected with one another?

We don’t know the computational classification of l-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).

How do we use S-Independent Set to find the computational classification of «-Clique?
Reduce S-Independent Set to k-Clique.

If we can perform the reduction, then -Clique must be as hard as S-Independent Set.

Reduce S-Independent Set to «-Clique

Instance
of
-Independent
Set

-

Transform
to
-Clique

L

Instance
of
-Clique

T

—

Solve
Instance of
-Clique

E—

Solution
to
-Clique

e

Transform
to
-Independent
Set

v New Algorithm for S-Independent Set

Must take only a polynomial amount of time

>

Solution
to
-Independent
Set

We want to find the S-
Independent set of G

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a «-Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

P-aiiguuinguy

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

LetS=4, and thus k=4

These 4 nodes comprise a size 4 clique of H; return true

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a -Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

These 4 nodes comprise a size 4 independent set of G; return true

LetS=4, and thus k=4

These 4 nodes comprise a size 4 clique of H; return true

We want to find the S-
Independent set of G

G has an S-Independent set if
and only if H has a «-Clique
(we’re not going to prove this)

Let’s instead find the
-Clique of H. (k= 5)

Where H is the
complement of G.

Reduce S-Independent Set to «-Clique

Instance
of
-Independent
Set

Transform
to
-Clique

Instance

— of

-Clique

Solve
Instance of
-Clique

Solution
to
-Clique

Must take only a polynomial amount of time

Since the S-Independent Set Problem can be reduced to the
The k-Cliqgue Problem, and the S-Independent Set Problem is

Transform
to

Jndependent*

Set

Solution
to
-Independent
Set

New Algorithm for S-Independent Set

NP-Complete, then the -Clique Problem is also NP-Complete.

Reduce S-Independent Set to «-Clique

Known New

The S-Independent Set Problem The -Clique Problem

Given a graph G and a number S, Given a graph G and a number &,

is there a set of nodes of size S in is there a set of nodes of size k in
such that no two nodes in the G such that all nodes are directly

set are directly connected in G? connected with one another?

We don’t know the computational classification of l-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).

How do we use S-Independent Set to find the computational classification of «-Clique?
Reduce S-Independent Set to k-Clique.

If we can perform the reduction, then -Clique must be as hard as S-Independent Set.

Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in O(nk) by any
known process

1. First prove that X is in NP (it can be verified in polynomial time)

2. Next prove that X is NP-Hard
1. Reduce some known NP-Complete or NP-Hard problem Y to X
2. This implies that any and all NP-Complete problems can be reduced to X

3. All NP-Complete problems have been reduced to another in an
interconnected web (the original problem is known as 3SAT)

3-SAT Example

