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* Discuss the process of reducing one problem to another
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Quick check: does Ig(n) € P?



Reduction

* |Instead of taking the time to mathematically prove that some
algorithm/problem belongs to a certain class, we can take a shortcut.

* We can put a problem in a specific class by looking at its difficulty.
° [ ]is as hard as | ].
* “The decision TSP Problem is as hard as the Hamiltonian Cycle Problem,

which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete
in this case since we can verify it with a polynomial time algorithm)”



Complexity Comparisons

If you want to show that is “easy”, then...
you show how to solve it by turning it into a known “easy”

If you want to show that is “hard”, then...
you show how it can be used to solve a known “hard”

These are called reductions.
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A reduction involves two different problems

We can reduce problem A to problem B if

* We have a polynomial time algorithm for converting an input to
problem A into an equivalent input for problem B and

* We have a polynomial time algorithm for converting an output of
problem B into an output of problem
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Must take only a polynomial amount of time




A reduction involves two different problems

We can reduce problem A to problem B if

* We have a polynomial time algorithm for converting an input to problem
into an equivalent input for problem B and

* We have a polynomial time algorithm for converting an output of problem
into an output of problem

If we can perform a reduction, then we can say things like
e [fBisinPthen AisinP
* If B isin NP-Complete then A is in NP-Complete

is at least as hard as A (though B might be much harder—Kou can always
convert a problem into something that takes way more work)



Reduction Example

* We can do better than the Floyd-Warshall algorithm O(n3) for sparse
graphs (even with negative edges).

* For example, a clever trick the all-pairs shortest path problem to
one invocation of the Bellman-Ford algorithm followed by n - 1 invocations
of Dijkstra’s algorithm.

* This reduction, which is called Johnson’s algorithm, runs in
O(mn) +(n-1) - O(m log n) =O0(mn log n).

* This is subcubic in n except when m is very close to quadratic in n.



John’s All-Pairs Shortest Path Algorithm
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Finding the Minimum Element

This is making the problem take more work
than needed... But the reduction is still

possible.
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Reduction for NP-Complete

* Given a new problem (and algorithm) called

* Let’s say we have an algorithm (potentially sub-optimal) to solve it, but we
don’t know to what class it belongs.

* We guess that (our Theorem)

new problem already proven to be in NP-Complete

Problem is at least as hard as problem

* Reduce to (Pxnown <p Pygw)

* Solve using a polynomial number of calls to the algorithm for
* Reduce the harder/known known problem to our new problem

* In doing say we can say that we’ve either found a more efficient solution to , or
we’ve proved that is also hard



Example Reduction (Reduce
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Prove two algorithms belong to the same class

is the all-pairs shortest path problem

is a new method for computing the shortest path from a start vertex to all other vertices
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Examples of Reductions

Reduce median selection to sorting.

* Finding the median value of an arraY of numbers is as hard as sorting the number and sorting the
number can be solved in polynomial-time.

Reduce cycle detection to DFS

* Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in
polynomial-time.

* This is related to Kruskal’s minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path

* Computing all pairs shortest paths is as hard as computing the shortest path from one node to
every other node n times, which can be done in polynomial time.

* Invoke polynomial time algorithm “n times” is still polynomial time (just increase exponent by 1).



Full Reduction Example

The S-Independent Set Problem

* Given a graph G and a number S, is there a set of nodes of size S in
such that no two nodes in the set are directly connected in G (they
are independent of each other)?
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Full Reduction Example

The S-Independent Set Problem

* Given a graph G and a number S, is there a set of nodes of size S in
such that no two nodes in the set are directly connected in G (they

are independent of each other)?

The -Clique Problem

* Given a graph G and a number , is there a set of nodes of size kin G
such that all nodes are directly connected with one another?



Reduce S-Independent Set to «-Clique

Known New

The S-Independent Set Problem The -Clique Problem

Given a graph G and a number S, Given a graph G and a number &,

is there a set of nodes of size S in is there a set of nodes of size k in
such that no two nodes in the G such that all nodes are directly

set are directly connected in G? connected with one another?

We don’t know the computational classification of l-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).

How do we use S-Independent Set to find the computational classification of «-Clique?
Reduce S-Independent Set to k-Clique.

If we can perform the reduction, then -Clique must be as hard as S-Independent Set.




Reduce S-Independent Set to «-Clique
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We want to find the S-
Independent set of G

Let’s instead find the
-Clique of H. (k= 5)
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complement of G.
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Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in O(nk) by any
known process

1. First prove that X is in NP (it can be verified in polynomial time)

2. Next prove that X is NP-Hard
1. Reduce some known NP-Complete or NP-Hard problem Y to X
2. This implies that any and all NP-Complete problems can be reduced to X

3. All NP-Complete problems have been reduced to another in an
interconnected web (the original problem is known as 3SAT)



3-SAT Example



