Sequence Alignment

 https://cs.pomona.edu/classes/cs140/
Change Return Possibilities

How many ways can you return amount A using n kinds of coins?

All the ways returning amount A using all but the first kinds of coins (using the other ($n-1$) kinds of coins) $+$
All the ways returning amount $(A-d)$ using n kinds of coins, where d is the denomination for the first kind of coin

Does this seem like a "hard" problem?

Outline

Topics and Learning Objectives

- Discuss the dynamic programming paradigm
- Investigate the sequence alignment problem

Assessments

- None

Sequence Alignment

- Compute the similarity between two strings.
- For example, using the Needleman-Wunsch Similarity Score

- Total penalty $=p_{\text {gap }}+p_{\text {AT }}$
- Assume these penalties are based on biological principles

Sequence Alignment

Input:

- Two strings $X=x_{1}, \ldots, x_{m}$; and $Y=y_{1}, \ldots, y_{n}$; over the alphabet Σ
- For example, $\Sigma=\{A, C, G, T\}$ for genomes
- Also given a penalty value for each possible error
- For example, $\mathrm{p}_{\mathrm{gap}}, \mathrm{p}_{\mathrm{AC}}, \mathrm{p}_{\mathrm{AG}}, \mathrm{p}_{\mathrm{AT}}, \mathrm{p}_{\mathrm{CG}}, \mathrm{p}_{\mathrm{CT}}, \mathrm{p}_{\mathrm{GT}}$

Output:

- Out of all possible alignments, output the one that minimizes total error

Sequence Alignment

Input:

- Two strings $X=x_{1}, \ldots, x_{m}$; and $Y=y_{1}, \ldots, y_{n}$; over the alphabet Σ
- For example, $\Sigma=\{A, C, G, T\}$ for genomes
- Also given a penalty value for each possible error
- For example, $\mathrm{p}_{\mathrm{gap}}, \mathrm{p}_{\mathrm{AC}}, \mathrm{p}_{\mathrm{AG}}, \mathrm{p}_{\mathrm{AT}}, \mathrm{p}_{\mathrm{CG}}, \mathrm{p}_{\mathrm{CT}}, \mathrm{p}_{\mathrm{GT}}$

Output:

- Out of all possible alignments, output the one that minimizes total error

How many possible alignments exist?

Example

Assume a penalty of

- 1 for each gap and
- 2 for a mismatch between symbols

A	G	T	A	C	G
A	C	A	T	A	G

What is the minimum penalty for these two strings?

Example

Assume a penalty of

- 1 for each gap and
- 2 for a mismatch between symbols

A	--	--	G	T	A	C	G
A	C	A	--	T	A	--	G

What is the minimum penalty for these two strings?

- 4

Optimal Substructure

- Let's zoom in on the last column of the alignment
X has m values

A	G	G	G	C	X_{m} ?
A	G	G	--	C	Y_{n} ?

Y has n values

- How many possibilities are there for the contents of the final column of an optimal alignment?
- Case 1: x_{m} and y_{n}
- Case 2: x_{m} and gap (handles case where y_{n} is matched with something else)
- Case 3: gap and y_{n} (handles case where x_{m} is matched with something else)

Case 1: x_{m} and y_{n} (no gap at the end)

- Let P denote the final alignment penalty after matching x_{m} and y_{n}
- Then the penalty of the part before the final match is

$$
\begin{aligned}
& P=P_{\text {first }}+P_{\text {end }} \\
& P_{\text {first }}=P-P_{\text {end }}
\end{aligned}
$$

$$
X^{\prime}+\text { gaps }
$$

A	G	G	...	C	...	x_{m}
A	G	G	...	G	...	y_{n}
			$Y^{\prime}+$ gaps			

- To get an optimal alignment, we want $\mathrm{P}_{\text {first }}$ to be optimal.

Case 2: x_{m} and gap

- In this case we match x_{m} with a gap
- We've removed one symbol from X (we'll call it X')
- But we still have the entire Y string

Case 3: gap and y_{n}

- In this case we match y_{n} with a gap
- We've removed one symbol from Y (we'll call it Y^{\prime})
- But we still have the entire X string

Optimal Substructure

An optimal alignment of two strings X and Y is one of

1. An optimal alignment of X^{\prime} and Y^{\prime} with X_{m} and y_{n} at the end
2. An optimal alignment of X^{\prime} and Y with X_{m} and a gap at the end
3. An optimal alignment of X and Y^{\prime} with a gap and y_{n} at the end

$$
\text { What if one of } X^{\prime} \text { or } Y^{\prime} \text { is empty at this stage? }
$$

Recurrence

$$
P_{i, j}=\min \left\{\begin{array}{l}
P_{i-1, j-1}+p_{x_{i}, y_{j}} \\
P_{i-1, j}+p_{g a p} \\
P_{i, j-1}+p_{g a p}
\end{array}\right.
$$

Code and Running Time

A good practice problem

Things to consider

- What size is the dynamic programming table?
- What are the base cases?
- What can we fill the table in with at the beginning?
- How many loops do we need?
- What is the running time?

Proof

A good practice problem

Things to consider

- What kind of proof seems natural?
- What are the base cases?
- What is our inductive hypothesis?
-What reasoning do we need for the inductive step?

FUNCTION Reconstructsequence (penalties, X, Y)
$i=p e n a l t i e s . x _l e n g t h-1$
$j=$ penalties.y_length - 1
alignedX = ""
alignedY = ""

```
WHILE i > 0 && j > 0
    MATCH penalties[i][j]
    IF case 1
        alignedX += X[i]; i -= 1
        alignedY += Y[j]; j -= 1
        IF case 2
        alignedX += X[i]; i -= I
        alignedY += "gap"
        IF case 3
        alignedX += "gap"
        alignedY += Y[j]; j -= 1
    fillAsNeeded(X, alignedX, Y, alignedY)
```

