https://cs.pomona.edu/classes/cs140/

Change Return Possibilities

How many ways can you return amount A using n kinds of coins?

All the ways returning amount A using all but the first kinds of coins (using the other (n-1) kinds of coins)

+

All the ways returning amount (A - d) using n kinds of coins, where d is the denomination for the first kind of coin

Does this seem like a "hard" problem?

Outline

Topics and Learning Objectives

- Discuss the dynamic programming paradigm
- Investigate the sequence alignment problem

<u>Assessments</u>

• None

- Compute the similarity between two strings.
- For example, using the Needleman-Wunsch Similarity Score

Α	G	G	G	С	Т	1
Α	G	G		С	Α	

- Total penalty = $p_{gap} + p_{AT}$
- Assume these penalties are based on biological principles

Input:

- Two strings $X = x_1, ..., x_m$; and $Y = y_1, ..., y_n$; over the alphabet Σ
 - For example, $\Sigma = \{A, C, G, T\}$ for genomes
- Also given a penalty value for each possible error
 - For example, p_{gap} , p_{AC} , p_{AG} , p_{AT} , p_{CG} , p_{CT} , p_{GT}

Output:

 Out of all possible alignments, output the one that minimizes total error

Input:

- Two strings $X = x_1, ..., x_m$; and $Y = y_1, ..., y_n$; over the alphabet Σ
 - For example, $\Sigma = \{A, C, G, T\}$ for genomes
- Also given a penalty value for each possible error
 - For example, p_{gap} , p_{AC} , p_{AG} , p_{AT} , p_{CG} , p_{CT} , p_{GT}

Output:

 Out of all possible alignments, output the one that minimizes total error

How many possible alignments exist?

Example

Assume a penalty of

- 1 for each gap and
- 2 for a mismatch between symbols

А	G	T	А	С	G
Α	С	Α	Т	Α	G

What is the minimum penalty for these two strings?

Example

Assume a penalty of

- 1 for each gap and
- 2 for a mismatch between symbols

Α			G	Т	А	С	G
Α	С	А		Т	Α		G

We'll say that these sequences have a common length of L

What is the minimum penalty for these two strings?

• 4

Optimal Substructure

Let's zoom in on the last column of the alignment

X has m values

Α	G	G	G	С	X _m ?
Α	G	G		С	Y _n ?

Y has n values

- How many possibilities are there for the contents of the final column of an *optimal* alignment?
 - Case 1: x_m and y_n
 - Case 2: x_m and gap (handles case where y_n is matched with something else)
 - Case 3: gap and y_n (handles case where x_m is matched with something else)

Case 1: x_m and y_n (no gap at the end)

- Let P denote the final alignment penalty after matching x_m and y_n
- Then the penalty of the part before the final match is

$$P = P_{first} + P_{end}$$
$$P_{first} = P - P_{end}$$

			X' + gaps			
Α	G	G		С	•••	X _m
Α	G	G		G		Уn
			Y' + gaps			

• To get an optimal alignment, we want P_{first} to be optimal.

Case 2: x_m and gap

- In this case we match x_m with a gap
- We've removed one symbol from X (we'll call it X')
- But we still have the entire Y string

			X' + gaps		
А	G	G	G	С	 X _m
Α	G	G	gap	С	 gap
			Y + gaps		

Case 3: gap and y_n

- In this case we match y_n with a gap
- We've removed one symbol from Y (we'll call it Y')
- But we still have the entire X string

			X + gaps		
Α	G	G	G	С	 gap
Α	G	G	gap	С	 y n
			Y' + gaps		

Optimal Substructure

An optimal alignment of two strings X and Y is one of

- 1. An optimal alignment of X'_{i} and Y'_{i} with x_{m} and y_{n} at the end
- 2. An optimal alignment of X' and Y with x_m and a gap at the end
- 3. An optimal alignment of X and Y' with a gap and y_n at the end

What if one of X' or Y' is empty at this stage?

Recurrence

$$P_{i,j} = \min \begin{cases} P_{i-1,j-1} + p_{x_i,y_j} \\ P_{i-1,j} + p_{gap} \\ P_{i,j-1} + p_{gap} \end{cases}$$

Code and Running Time

A good practice problem

Things to consider

- What size is the dynamic programming table?
- What are the base cases?
- What can we fill the table in with at the beginning?
- How many loops do we need?
- What is the running time?

Proof

A good practice problem

Things to consider

- What kind of proof seems natural?
- What are the base cases?
- What is our inductive hypothesis?
- What reasoning do we need for the inductive step?

```
FUNCTION ReconstructSequence (penalties, X, Y)
i = penalties.x length - 1
j = penalties.y length - 1
alignedX = ""
alignedY = ""
WHILE i > 0 \& \& j > 0
   MATCH penalties[i][j]
      IF case 1
         alignedX += X[i]; i -= 1
         alignedY += Y[j]; j -= 1
      IF case 2
         alignedX += X[i]; i -= 1
         alignedY += "gap"
      IF case 3
         alignedX += "gap"
         alignedY += Y[j]; j -= 1
fillAsNeeded(X, alignedX, Y, alignedY)
```