Floyd-Warshall Algorithm
 For Solving the All-Pairs Shortest Path Problem

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Discuss and analyze the Floyd-Warshall Algorithm

Exercise

- None

All-Pairs Shortest Path Problem

Compute the shortest path from every vertex to every other vertex

- Input: a weighted graph (no need for a start vertex)
- Output:
- Shortest path from $u \rightarrow v$ for all values of u and v
- Or report that a negative cycle has been discovered
- Can we solve this problem with what we know already?

SSSP \rightarrow APSP

How do we turn a solution to the single-source shortest path (SSSP) problem into a solution for the all-pairs shortest path (APSP) problem?

- This is called a reduction!
- How many times do we need to run a SSSP procedure for APSP?
a. 1
b. $\mathrm{n}-1$
c. n
d. n^{2}

SSSP algorithms

Running time of APSP if we don't allow negative edges?

- n * $\mathrm{O}($ Dijkstra's Algorithm) $=\mathrm{O}(\mathrm{n} \mathrm{m} \lg \mathrm{n})$
- For sparse graphs:
$O\left(n^{2} \lg n\right)$
- For dense graphs: $O\left(n^{3} \lg n\right)$

Running time of APSP if we do allow negative edges?

- $\mathrm{n} * \mathrm{O}$ (Bellman-Ford) $=\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$
- For sparse graphs:
$O\left(n^{3}\right)$
- For dense graphs:
$O\left(n^{4}\right)$

Consider APSP on dense graphs.

- How many values are we going to output? n^{2}
- What is the potential length of a shortest path? $\mathrm{n}-1$
- What is the lower bound on the running time of ASPS?
- It is tempting to say that the lower bound is n^{3}
- However, this lower bound has yet to be determined
- Consider the matrix multiplication procedure developed by Strassen

Specialized APSP Algorithm

- Although we can use Bellman-Ford and Dijkstra's algorithms, there are, in fact, specialized APSP algorithms
- The Floyd-Warshall algorithm solves the APSP problem deterministically in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ on all types of graph
- It works with negative edge lengths
- Meaning that is is as good as Bellman-Ford for sparse graphs,
- And much better than Bellman-Ford for dense graphs.

Question

	Sparse Graphs	Dense Graphs
Dijkstra's n times	$O\left(n^{2} \lg n\right)$	$O\left(n^{3} \lg n\right)$
Bellman-Ford n times	$O\left(n^{3}\right)$	$O\left(n^{4}\right)$
Floyd-Warshall	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$

- What algorithm would you choose for sparse graphs?
- Dijkstra's n times if there are no nnegative edges, Floyd-Warshall otherwise
- What algorithm would you choose for dense graphs?
- Always Floyd-Warshall

Optimal Substructure for APSP

Key concept:

- label the vertices 1 though n (giving them an arbitrary order),
- and then introduce the notation $V^{(k)}=\{1,2, \ldots, k\}$

Optimal Substructure Lemma:

- Assume, for now, that the graph does not include a negative cycle
- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$

Example Substructure

Optimal Substructure Lemma:

- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$

Example Substructure

Optimal Substructure Lemma:

- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$
$i=17$
$j=10$

Example Substructure

Optimal Substructure Lemma:

- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$

$$
\begin{aligned}
& i=17 \\
& j=10
\end{aligned}
$$

Example Substructure

Optimal Substructure Lemma:

- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$

$$
\begin{aligned}
& i=17 \\
& j=10
\end{aligned}
$$

What is the value of the shortest path found by FW?

Example Substructure

Optimal Substructure Lemma:

- Fix a source vertex i, a destination vertex j, and a value for k
- Then let P be the shortest $i \rightarrow j$ path with internal nodes from $V^{(k)}$

$$
\begin{aligned}
& i=17 \\
& j=10 \\
& k=5
\end{aligned}
$$

What is the value of the shortest path found by FW?

Optimal Substructure Lemma

Suppose that G has no negative cycles. Let P be the shortest (cycle-free) path $i \rightarrow j$, where all internal nodes come from $V^{(k)}$. Then:

- Case 1: if k is not internal to P, then P is also a shortest path $i \rightarrow j$ with all internal nodes from $\mathrm{V}^{(\mathrm{k}-1)}$.
- Case 2: if k is internal to P, then:
- Let $P_{1}=$ the shortest $i \rightarrow k$ path with nodes from $V^{(k-1)}$, and
- Let $P_{2}=$ the shortest $k \rightarrow j$ path with nodes from $V(k-1)$
- Effectively, k splits the path into two optimal subproblems

Picture of our cases

Floyd-Warshall Algorithm Base Cases

Let $A=3 D$ array, where $A[i, j, k]=$ the length of the shortest $i \rightarrow j$ path with all internal nodes from $\{1,2, \ldots, k\}$

- Which index (i, j, or k) do you think represents our base case?

What is the value of $A[i, j, 0]$ when...

- $i=j$? 0
- there is a direct edge from i to $\mathrm{j} \mathrm{c}_{\mathrm{i}}$
- there is no edge directly connecting i to j

FUNCTION FloydWarshall(graph)

\# Base 1 indexing for vertices labeled 1 through n pathLengths $=$ [n by n by ($n+1$) array]
\# Base case

```
FOR vFrom IN [1 ..= n]
```

 FOR vTo IN [1 ... \(n\)]
 IF i \(==j\)
 length \(=0\)
 ELSE IF graph.hasEdge(vFrom, vTo)
 length \(=\) graph.edges[vFrom][vTo].weight
 ELSE
 length = INFINITY
 pathLengths[vFrom][vTo][0] = length
 \# Table building
continued next slide...

FUNCTION FloydWarshall(graph)

\# Base 1 indexing for vertices labeled 1 through n pathLengths $=$ [n by n by ($n+1$) array]
\# Base case
cut from previous slide...
\# Table building
FOR k IN [1 .. $=n]$
FOR vFrom IN [1 ... $=\mathrm{n}]$
FOR vTo IN [1 ..= n]
\# Case 1
withoutk $=$ pathLengths[vFrom][vTo][k - 1]
\# Case 2
withKSubPathA $=$ pathLengths[vfrom][k][k - 1]
withKSubPathB $=$ pathLengths[k][vTo][k - 1]
pathLengths[vFrom][vTo][k] $=\min ($
withoutk,
withKSubPathA + withKSubPathB
)

Floyd-Warshall Algorithm

Running time?

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Correctness?

- Substructure lemma

```
# Table building
FOR k IN [1 ..= n]
    FOR vFrom IN [1 ..= n]
        FOR vTo IN [1 ..= n]
        # Case I
        withoutK = pathLengths[vFrom][vTo][k - 1]
        # Case 2
        withKSubPathA = pathLengths[vfrom][k][k - 1]
        withKSubPathB = pathLengths[k][vTo][k - 1]
        pathLengths[vFrom][vTo][k] = min(
        withoutK,
        withKSubPathA + withKSubPathB
    )
```

- Where are the final answers?
- How does it handle negative cycles?
- Reconstruction is similar to other dynamic programming problems.

