Clustering

Outline

Topics and Learning Objectives

- Discuss clustering applications
- Cover the greedy, Max-Spacing K-Clustering Algorithm

Exercise

- Clustering practice

Extra Resources

- Algorithms Illuminated Part 3, Chapter 15

Clustering

Goal: given a set of n "points" we should group the points in some sensible manner

What are some possible sets of points?

- Webpages, images, genome fragments, people, etc.

For anyone interested in machine learning, clustering is a relative of unsupervised learning

Clustering

Assumptions:

1. We are given a similarity (or dissimilarity) value for all points
2. Similarities are symmetric

$$
\begin{aligned}
& d(p, q) \text { is the similarity between points } p \text { and } q \\
& \text { And } d(p, q)=d(q, p)
\end{aligned}
$$

Examples include Euclidean distance and edit distance

Goal: cluster "nearby" points

Goal: cluster "nearby" points

Goal: cluster "nearby" points

Clustering Topics/Algorithms

- Related to data mining, statistical data analysis, machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.
- Hierarchical clustering
- Centroid clustering (k-means!)
- Distribution Clustering
- Density Clustering

Max-Spacing K-Clustering

- We assume that we know a good value for k, where k is the number of clusters that we are going to form.
- k is not discovered completely automatically (pick a few values are try them out).
- Two p and q points are separated if they are in different clusters.
- Thus, points that are similar should not be separated.
- Spacing S for a set of k-clusters is given by:

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

- Given the above definition, what does a relatively large value for S signify?

Max-Spacing K-Clustering

- Problem statement: given a distance measure d and a cluster count k , compute the k-clustering with a maximum spacing S.
- Let's solve this problem with a greedy approach.
- Greedy algorithm setup:
- Ignore k (the number of clusters) we produce until the end
- Start by putting every point into its own cluster
- How do we make spacing larger each iteration?
- What is our greedy choice?

Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

$$
\text { let } p, q=\underset{\substack{\text { This is the operation that determines spacing }}}{\text { closest pair of separated points }}
$$

merge the clusters containing p and q

Max-Spacing K-Clustering

Put each point into its own cluster

Max-Spacing K-Clustering

Repeat until we have only k clusters
p, $q=$ closest pair of separated points merge the clusters containing p and q

Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
$\mathrm{p}, \mathrm{q}=$ closest pair of separated points merge the clusters containing p and q

Max-Spacing K-Clustering

$$
k=3
$$

Put each point into its own cluster

Repeat until we have only k clusters
p, q = closest pair of separated points merge the clusters containing p and q

Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
$\mathrm{p}, \mathrm{q}=$ closest pair of separated points merge the clusters containing p and q

q

Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
$p, q=c l o s e s t ~ p a i r ~ o f ~ s e p a r a t e d ~ p o i n t s ~$ merge the clusters containing p and q

Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
$\mathrm{p}, \mathrm{q}=$ closest pair of separated points merge the clusters containing p and q

Max-Spacing K-Clustering

$$
k=3
$$

Put each point into its own cluster

Repeat until we have only k clusters
p, q = closest pair of separated points merge the clusters containing p and q

Exercise Question 1

Does this algorithm look familiar?

- This procedure is nearly identical to Kruskal's Algorithm for MST

Kruskals

Sort E by edge cost
T = empty
Each vertex into disjoint set

Repeat until only 1 set:
u, v = next cheapest edge
if Find(u) $=$ Find(v) Union sets

Max-Spacing k-Clustering

Sort point pairs by d
C = empty

Each point into own cluster

Repeat until only k clusters: p, q = next closest points if p and q are separated Merge clusters

Does this algorithm look familiar?

- This procedure is nearly identical to Kruskal's Algorithm for MST
- What are the vertices?
- What are the edge costs?
- How many edges are there?
- This gives us a "complete" graph.
- Using Kruskal's algorithm for cluster is called single link clustering.

Proof

Theorem: single-link clustering finds the max-spacing k-clustering of a set of points.

- Although we are using Kruskal's algorithm, the objective has changed.
- So, we cannot use the proof from before.

Exchange Argument

- Let $\mathrm{C} 1, \ldots, \mathrm{Ck}$ be the k clusters computed by the greedy algorithm
- Let S be the spacing of these k clusters
- Let $\mathrm{C1} 1^{\prime}, \ldots, \mathrm{Ck}^{\prime}$ be any other k clusters, with spacing S^{\prime}

Exercise Question 2

- To prove our theorem, we need to show that $\mathrm{S}^{\prime} \leq \mathrm{S}$

Proof of Single-Link Clustering

- Note: it would be bad to find a case where $S^{\prime}>S$
- Case 1 (edge case): $\mathrm{C1}^{\prime}, \ldots, \mathrm{Ck}$ ' are just a renaming $\mathrm{C} 1, \ldots, \mathrm{Ck}$
- In which case, $\mathrm{S}^{\prime}=\mathrm{S}$ and we are done with this case
- Case 2: We can find a pair of points a and b such that:
- a and b are in the same greedy cluster Ci
- a and b are in different clusters $\mathrm{Ca}^{\prime}, \mathrm{Cb}^{\prime}$

Exchange

Proof of Single-Link Clustering

We have two cases to consider:

Case 2a: in the greedy algorithm, points a and b are directly merged at some point

Case 2b: in the greedy algorithm, points a and b are indirectly merged at some point

Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at some point

- How does $d(a, b)$ relate to S ?

Max-Spacing K-Clustering

$$
k=3
$$

$$
S=?
$$

Put each point into its own cluster

Repeat until we have only k clusters p, q = closest pair of separated points merge the clusters containing p and q

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

Max-Spacing K-Clustering

$$
k=3
$$

$$
S=1
$$

Put each point into its own cluster

Repeat until we have only k clusters p, q = closest pair of separated points merge the clusters containing p and q

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

Max-Spacing K-Clustering

$$
k=3
$$

$S=1.75$

Put each point into its own cluster

Repeat until we have only k clusters p, $q=$ closest pair of separated points merge the clusters containing p and q

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

Max-Spacing K-Clustering

$$
k=3
$$

$S=2.3$

Put each point into its own cluster

Repeat until we have only k clusters p, q = closest pair of separated points merge the clusters containing p and q

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

Max-Spacing K-Clustering

$$
k=3
$$

Put each point into its own cluster

Repeat until we have only k clusters p, $q=$ closest pair of separated points merge the clusters containing p and q

$$
S=\min _{\text {for all separated } p, q} d(p, q)
$$

$$
d(a, b) \leq S=4.2
$$

Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at some point

- How does $d(a, b)$ relate to S ?
- If two points a and b are directly merged, then $\mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{S}$
- Additionally, the distance between any two merged points only goes up (or stays the same) after each iteration

Proof of Single-Link Clustering

Case 2a: in the greedy algorithm, points a and b are directly merged at some point

- How does $d(a, b)$ relate to S ?
- If two points a and b are directly merged, then $\mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{S}$
- Additionally, the distance between any two merged points only goes up (or stays the same) after each iteration
- So, we have that $\mathrm{S}^{\prime} \leq \mathrm{d}(\mathrm{a}, \mathrm{b}) \leq \mathrm{S} \quad \rightarrow \quad \mathrm{S}^{\prime} \leq \mathrm{S}$

To prove our theorem, we need to show that $\mathrm{S}^{\prime} \leq \mathrm{S}$

Proof of Single-Link Clustering

We have two cases to consider:

Case 2a: in the greedy algorithm, points and are directly merged at some point

Case 2b: in the greedy algorithm, points a and b are indirectly merged at some point

Proof of Single-Link Clustering

Case 2 b : in the greedy algorithm, points a and b are indirectly merged at some point

- How does $d(a, b)$ relate to S ?

$$
d(a, b) \nless S=4.2
$$

- Lines denote direct merges
- All points are in the same cluster in the end

Proof of Single-Link Clustering

Case 2 b : in the greedy algorithm, points a and b are indirectly merged at some point

```
Case 2: We can find a pair of points a and b such that:
    a and b are in the same greedy cluster Ci
    a and b are in different clusters Ca', Cb'
```

- Let <a, a1, ..., aL, b> be the path of direct merges connecting a and b
- In the non-greedy solution, since a is in Ca^{\prime} and b is in Cb^{\prime} there must be some consecutive pair where aj is in Ca^{\prime} and $\mathrm{aj}+1$ is in Cb^{\prime}
- Thus $\mathrm{S}^{\prime} \leq \mathrm{d}(\mathrm{aj}, \mathrm{aj}+1) \leq \mathrm{S} \rightarrow \quad \mathrm{S}^{\prime} \leq \mathrm{S}$

Proof of Single-Link Clustering

- So, we have proved that under all circumstances, S is the biggest possible spacing for the points
- Thus, the greedy (Kruskal's-based) algorithm is optimal and correct

Preview for Dynamic Programming

How many ways can you return amount A using n kinds of coins?

All the ways returning amount A using all but the first kinds of coins (using the other ($n-1$) kinds of coins) $+$
All the ways returning amount ($A-d$) using n kinds of coins, where d is the denomination for the first kind of coin

Does this seem like a "hard" problem?

