
Huffman Codes
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives
• Introduce Huffman Codes for compression

Exercise
• None

2

Extra Resources

• Algorithms Illuminated Part 3, Chapter 14

3

Huffman Codes

• This will be our final greedy algorithm / application
• Huffman Codes are used for compression

• In general they can be thought of as:
• A mapping of some set of characters/symbols to binary strings

• For example: let’s encode the letters [a-z] and {., ?, !, ;, :}.
• How many bits would you use?
• Does this type of encoding sound familiar at all?

4

Huffman Codes

• In general we use Σ to represent the set of characters
• Let Σ = {A, B, C, D}
• What is one possible binary encoding?

• How many bits does it take to store 100 characters?

A B C D
00 01 10 11

5

Huffman Codes

Can we do better than this fixed-length encoding (use fewer bits)?

What does the string 001 encode?
AB CD AAD
001 101 001

Σ = A B C D
Fixed Encoding 00 01 10 11

(Bad) Variable Encoding 0 01 10 1

6

Huffman Codes

The problem with this encoding is called prefixing.

• This is not a prefix-free encoding.
• Problem: we don’t know where one character ends

and the next begins.
• Solution: ensure that the encoding is prefix-free.

Σ = A B C D
Fixed Encoding 00 01 10 11

(Bad) Variable Encoding 0 01 10 1

7

Example Prefix-Free Encoding

Σ = A B C D
Fixed Encoding 00 01 10 11

Prefix-free Encoding

8

Example Prefix-Free Encoding

Now, we know exactly when one character ends and another starts.

Why would this be a good idea?
• What if we needed to store a bunch of A’s but only a few C’s?

Σ = A B C D
Fixed Encoding 00 01 10 11

Prefix-free Encoding 0 10 110 111

9

Example Prefix-Free Encoding

What are the average bit lengths for these two encodings?

Σ = A B C D
Fixed Encoding 00 01 10 11

Prefix-free Encoding 0 10 110 111
Frequency 60% 25% 10% 5%

10

Discovering the Best Encoding

Let’s think of Huffman Codes as trees. Σ = A, B, C, D

Fixed Encoding
{00,01,10,11}

First Variable Encoding
{0,01,10,1}

Prefix-Free Encoding
{0,10,110,111}

0

10 0 1

1

A B DC

0

1 0

1

A

B

D

C

0 1

A

B

0 1

0 1

DC

11

Huffman Codes as Trees

• Go to left child on a ‘0’
• Go to right child on a ‘1’
• For each symbol in Σ, exactly one node should be labeled x
• Prefix-free encoding require all labeled nodes to be leaves
• Trees are just a tool for helping us construct optimal encodings
• Decode: follow the input string until you reach a leaf
• Encode(x): the path followed from the root to x
• The encoding length of x is the same as its depth

12

Decode the string: 0110111

0 1

A

B

0 1

0 1

DC
13

Huffman Codes

Problem: how do we choose/design our encodings?

• Input: a set of symbols Σ and their probabilities/frequencies pi

• Notation: if T is a tree with leaves as symbols of Σ, then let

𝐿 𝑇 = $
!"#

|%|

𝑝! ∗ 𝑑𝑒𝑝𝑡ℎ!

• L(T) is the average encoding length
• The output of our algorithm will be a binary tree T that minimizes L(T)

14

Huffman’s Algorithm (compression)

Huffman’s approach is the start at the leaves and build the the tree
bottom-up

15

BA C D

C D

BA

Iteration 1

Iteration 2

C D

B

A

Iteration 3 Iteration 4

C D

B

A

16

BA C D

C D

BA

Iteration 1

Iteration 2

C DBA

Iteration 3 Iteration 4

C DBA

17

C D

B

A

C DBA

Which Tree is Better?

It depends on the frequencies!

18

Huffman’s Algorithm

• We’re building from the leaves up.
• How do we know which two symbols we should merge?
• How does the final encoding length of a given symbol in Σ relate to

the number of merges it experiences?

• Each merge adds one node to the path from the root to x!
• So, how do we minimize the weighted average encoding length?
• Huffman’s Greedy Criteria: Merge the least frequent characters first.

19

BA C D

CDBA

Iteration 1

Iteration 2

How do we compare nodes after a merge?

0.6 0.2 0.15 0.05

0.6 0.2 ?? a) pc + pd
b) Min[pc , pd]
c) Max[pc , pd]
d) pc * pd

20

FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
treeA = extract_min(forest)
treeB = extract_min(forest)
treeMerged = merge(treeA, treeB)
heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

21

FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
treeA = extract_min(forest)
treeB = extract_min(forest)
treeMerged = merge(treeA, treeB)
heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

Σ = A B C D E F
P = 3 2 6 8 2 6

22

FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
treeA = extract_min(forest)
treeB = extract_min(forest)
treeMerged = merge(treeA, treeB)
heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

What is the running time?
Note: faster algorithms do exist for this problem 23

Correctness Proof

Theorem: Huffman’s algorithm computes a binary tree that minimizes
the average encoding length of all symbols

𝐿 𝑇 = $
!"#

|%|

𝑝! ∗ 𝑑𝑒𝑝𝑡ℎ!

Strategy:
• Induction
• Exchange argument

Proof by induction that P(n) holds for all n

• Base Case: P(1) holds because …

• Inductive Hypothesis: Let’s assume that P(k) holds, where k < n

• Inductive Step: P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n
24

Inductive Proof

Base Case:
• If n = 1 or n = 2 there is only one option for average encoding length
• Thus the base cases are trivially true

Inductive Hypothesis:
• Huffman’s algorithm produces the optimal coding with ≤ k symbols

where k < n

Inductive Step…

Proof by induction that P(n) holds for all n

• Base Case: P(1) holds because …

• Inductive Hypothesis: Let’s assume that P(k) holds, where k < n

• Inductive Step: P(n) holds because of P(k) and …

• Thus, by induction, P(n) holds for all n

25

Main Ideas for Inductive Step

Let symbols ø and π be the symbols with the smallest and second
smallest frequencies, respectively

1. Huffman’s Algorithm outputs the optimal tree in which ø and π are
siblings
• Out of all possible trees where ø and π are siblings

2. The optimal tree is the one in which ø and π are siblings
• Out of all possible trees in general

26

Part 1

Huffman’s outputs the optimal tree in which ø and π are siblings

• After combining symbols ø and π into a single “øπ” symbol we have
reduced the total number of symbols by 1

• Given our inductive hypothesis, we know that Huffman’s algorithm
outputs the optimal tree for k symbols where k < n

• Thus, Huffman’s outputs the optimal tree after combining ø and π

27

Part 2

The optimal tree is the one in which ø and π are siblings

• Consider the case where ø and π are not siblings
• And we then exchange ø and π with two nodes that are siblings
• The average encoding length goes down (or stays the same)!

a b ø
π

ø π a
b

28

Summary

• Prefix-free, variable-length binary codes have smaller average
encoding lengths (per symbol) than fixed-length codes

• These Huffman Codes can be visualized as a binary tree

• Huffman’s Algorithm works by greedily combining trees in the forest
until you are left with a single tree in O(n lg n) time

• We proved correctness with induction and an exchange argument

29

