## Huffman Codes

https://cs.pomona.edu/classes/cs140/

## Outline

## Topics and Learning Objectives

- Introduce Huffman Codes for compression

Exercise

- None


## Extra Resources

- Algorithms Illuminated Part 3, Chapter 14


## Huffman Codes

- This will be our final greedy algorithm / application
- Huffman Codes are used for compression
- In general they can be thought of as:
- A mapping of some set of characters/symbols to binary strings
- For example: let's encode the letters [a-z] and \{., ?, !, ;, :\}.
- How many bits would you use?
- Does this type of encoding sound familiar at all?


## Huffman Codes

- In general we use $\Sigma$ to represent the set of characters
- Let $\Sigma=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- What is one possible binary encoding?

- How many bits does it take to store 100 characters?


## Huffman Codes

Can we do better than this fixed-length encoding (use fewer bits)?

| $\Sigma=$ | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Fixed Encoding | 00 | 01 | 10 | 11 |
| (Bad) Variable Encoding | 0 | 01 | 10 | 1 |

What does the string 001 encode?

| $A B$ | $C D$ | AAD |
| :---: | :---: | :---: |
| 001 | 101 | 001 |

## Huffman Codes

The problem with this encoding is called prefixing.

| $\Sigma=$ | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Fixed Encoding | 00 | 01 | 10 | 11 |
| (Bad) Variable Encoding | 0 | 01 | 10 | 1 |

- This is not a prefix-free encoding.
- Problem: we don't know where one character ends and the next begins.
- Solution: ensure that the encoding is prefix-free.


## Example Prefix-Free Encoding

| $\Sigma=$ | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Fixed Encoding | 00 | 01 | 10 | 11 |
| Prefix-free Encoding |  |  |  |  |

## Example Prefix-Free Encoding

| $\Sigma=$ | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Fixed Encoding | 00 | 01 | 10 | 11 |
| Prefix-free Encoding | 0 | 10 | 110 | 111 |

Now, we know exactly when one character ends and another starts.

Why would this be a good idea?

- What if we needed to store a bunch of A's but only a few C's?


## Example Prefix-Free Encoding

| $\Sigma=$ | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Fixed Encoding | 00 | 01 | 10 | 11 |
| Prefix-free Encoding | 0 | 10 | 110 | 111 |
| Frequency | $\mathbf{6 0 \%}$ | $\mathbf{2 5 \%}$ | $\mathbf{1 0 \%}$ | $\mathbf{5 \%}$ |

What are the average bit lengths for these two encodings?

## Discovering the Best Encoding

## Let's think of Huffman Codes as trees. $\Sigma=A, B, C, D$



## Huffman Codes as Trees

- Go to left child on a ' 0 '
- Go to right child on a ' 1 '
- For each symbol in $\Sigma$, exactly one node should be labeled $x$
- Prefix-free encoding require all labeled nodes to be leaves
- Trees are just a tool for helping us construct optimal encodings
- Decode: follow the input string until you reach a leaf
- Encode(x): the path followed from the root to $x$
- The encoding length of $x$ is the same as its depth

Decode the string: 0110111


## Huffman Codes

Problem: how do we choose/design our encodings?

- Input: a set of symbols $\Sigma$ and their probabilities/frequencies $p_{i}$
- Notation: if T is a tree with leaves as symbols of $\Sigma$, then let

$$
L(T)=\sum_{i=1}^{|\Sigma|} p_{i} * \operatorname{depth}_{i}
$$

- $L(T)$ is the average encoding length
- The output of our algorithm will be a binary tree $T$ that minimizes $L(T)$


## Huffman's Algorithm (compression)

Huffman's approach is the start at the leaves and build the the tree bottom-up

Iteration 1
A
B


Iteration 2


Iteration 3
Iteration 4


Iteration 1


Iteration 2


Iteration 3
Iteration 4


## Which Tree is Better?



It depends on the frequencies!

## Huffman's Algorithm

- We're building from the leaves up.
- How do we know which two symbols we should merge?
- How does the final encoding length of a given symbol in $\Sigma$ relate to the number of merges it experiences?
- Each merge adds one node to the path from the root to $x$ !
- So, how do we minimize the weighted average encoding length?
- Huffman's Greedy Criteria: Merge the least frequent characters first.


## How do we compare nodes after a merge?

Iteration 1

Iteration 2

a) $p_{c}+p_{d}$
b) $\operatorname{Min}\left[p_{c}, p_{d}\right]$
c) $\operatorname{Max}\left[p_{c}, p_{d}\right]$
d) $p_{c} * p_{d}$

```
FUNCTION Huffman(symbols, frequencies)
```

```
forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)
WHILE forest.length }\geq
    treeA = extract min(forest)
    treeB = extract_min(forest)
    treeMerged = merge(treeA, treeB)
    heap_add(forest, treeMerged)
# Only one tree remaining in forest
RETURN forest[0]
```

```
FUNCTION Huffman(symbols, frequencies)
```

```
forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)
```

```
WHILE forest.length \geq 2
    treeA = extract_min(forest)
    treeB = extract_min(forest)
    treeMerged = merge(treeA, treeB)
    heap_add(forest, treeMerged)
```

\# Only one tree remaining in forest
RETURN forest[0]

| $\Sigma=$ | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $P=$ | 3 | 2 | 6 | 8 | 2 | 6 |

```
FUNCTION Huffman(symbols, frequencies)
```

```
forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)
WHILE forest.length }\geq
    treeA = extract min(forest)
    treeB = extract_min(forest)
    treeMerged = merge(treeA, treeB)
    heap_add(forest, treeMerged)
    # Only one tree remaining in forest
    RETURN forest[0]
```


## What is the running time?

## Correctness Proof

Theorem: Huffman's algorithm computes a binary tree that minimizes the average encoding length of all symbols

$$
L(T)=\sum_{i=1}^{|\Sigma|} p_{i} * \operatorname{depth}_{i}
$$

## Strategy:

- Induction
- Exchange argument

Proof by induction that $P(n)$ holds for all $n$

- Base Case: $\mathrm{P}(1)$ holds because ...
- Inductive Hypothesis: Let's assume that $\mathrm{P}(\mathrm{k})$ holds, where $\mathrm{k}<\mathrm{n}$
- Inductive Step: $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $\mathrm{P}(\mathrm{n})$ holds for all n


## Inductive Proof

## Base Case:

```
Proof by induction that P(n) holds for all n
```

- Base Case: P(1) holds because ...
- Inductive Hypothesis: Let's assume that $\mathrm{P}(\mathrm{k})$ holds, where $\mathrm{k}<\mathrm{n}$ - Inductive Step: $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $\mathrm{P}(\mathrm{n})$ holds for all n
- If $n=1$ or $n=2$ there is only one option for average encoding length
- Thus the base cases are trivially true

Inductive Hypothesis:

- Huffman's algorithm produces the optimal coding with $\leq \mathrm{k}$ symbols where k < n

Inductive Step...

## Main Ideas for Inductive Step

Let symbols $\varnothing$ and $\pi$ be the symbols with the smallest and second smallest frequencies, respectively

1. Huffman's Algorithm outputs the optimal tree in which $\varnothing$ and $\pi$ are siblings

- Out of all possible trees where $\varnothing$ and $\pi$ are siblings

2. The optimal tree is the one in which $\varnothing$ and $\pi$ are siblings

- Out of all possible trees in general


## Part 1

Huffman's outputs the optimal tree in which $\varnothing$ and $\pi$ are siblings

- After combining symbols $\varnothing$ and $\pi$ into a single " $\varnothing \pi$ " symbol we have reduced the total number of symbols by 1
- Given our inductive hypothesis, we know that Huffman's algorithm outputs the optimal tree for k symbols where k < n
- Thus, Huffman's outputs the optimal tree after combining $\varnothing$ and $\pi$


## Part 2

The optimal tree is the one in which $\varnothing$ and $\pi$ are siblings

- Consider the case where $\varnothing$ and $\pi$ are not siblings
- And we then exchange $\varnothing$ and $\pi$ with two nodes that are siblings
- The average encoding length goes down (or stays the same)!



## Summary

- Prefix-free, variable-length binary codes have smaller average encoding lengths (per symbol) than fixed-length codes
- These Huffman Codes can be visualized as a binary tree
- Huffman's Algorithm works by greedily combining trees in the forest until you are left with a single tree in $O(n \lg n)$ time
- We proved correctness with induction and an exchange argument

