Kruskal's MST Algorithm

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Introduce Kruskal's algorithms for MSTs
- Discuss disjoint sets

Exercise

- Kruska's exercise

Extra Resources

- Introduction to Algorithms, 3rd, chapter 23
- Algorithms Illuminated Part 3, Chapter 15

Trick Question for the Day

Which is asymptotically bigger?

$O(m \lg n)$ or $O(m \lg m)$

Minimum-Spanning-Tree Overview

Input: an undirected graph where each edge has an associated cost

Output: a minimum-spanning-tree

1. Connects the entire graph as a tree, but
2. Has a minimal cost

Assumptions:

1. The input graph is connected
2. The edges costs are distinct (only necessary/useful for our proof)

Cut Property: if e is the cheapest edge crossing a cut, then it must be in the MST

Kruskal's

A greedy algorithm for finding the minimum spanning tree

Why are we learning another one?

- Kruskal's will motivate a new data structure: Union-Find (disjoint-set)
- It will also let us talk a bit about clustering

Can you think of another greedy algorithm for solving MST?

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost T = empty

Edge based

For e in E:

$$
\begin{aligned}
& \text { if } T \cup\{(u, v)\} \text { has no cycles } \\
& \text { add e to } T
\end{aligned}
$$

Exercise question 1.

1. In what order are the edges selected using Kruskal's Algorithm?

Proof of Kruskal's Algorithm

Theorem: Kruskal's algorithm is correct (computes the MST)

Let $T^{*}=$ the output of Kruskal's algorithm

Graph/Cut/Tree Lemmas and Properties

- Empty Cut Lemma: a graph is not connected if there exists a cut (A, B) with zero crossing edges
- Double Crossing Lemma: suppose the cycle C has an edge crossing the cut (A, B), then there must be at least one more edge in C that crosses the cut
- No Cycle Corollary: if e is the only edge crossing some cut (A, B), then it is not in any cycle
- Cut Property: if e is the cheapest edge that crosses the cut (A, B) then it must be in the MST

Proof of Kruskal's Algorithm

Theorem: Kruskal's algorithm is correct (computes the MST)
Let $T^{*}=$ the output of Kruskal's algorithm

Does Kruskal's output a spanning tree (what are the properties)?

- No cycles
- Connected

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in E:

$$
\begin{aligned}
& \text { if } T \cup\{(u, v)\} \text { has no cycles } \\
& \text { add e to } T
\end{aligned}
$$

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in E:

$$
\begin{aligned}
& \text { if } \mathrm{T} U\{(u, v)\} \text { has no cycles } \\
& \text { add e to } T
\end{aligned}
$$

Proof of Kruskal's Algorithm

Theorem: Kruskal's algorithm is correct (computes the MST)
Let $T^{*}=$ the output of Kruskal's algorithm

Does Kruskal's output a spanning tree (what are the properties)?

- No cycles (this is given by the definition of the algorithm)
- Connected

Proof of Kruskal's Algorithm

Proof of Connectivity

- Given the Empty Cut Lemma, we only need to show that Kruskal's produces a tree T^{*} that crosses every cut.
- Fix a cut (A, B)
- Since G is connected, at least one of its edges crosses (A, B)
- Kruskal's algorithm considers each edge once
- Let's fast-forward to the first time that it encounters an edge crossing (A, B)
- Claim: this 1st edge is guaranteed to be in T^{*}
- Given the No Cycle Corollary the claim is true
- It is also the minimum edge to cross the cut (sorted edges)

Proof of Kruskal's Algorithm

For the second part of the proof, we need to prove that T^{*} is minimal

- We just finished proving that Kruskal's outputs some spanning tree T^{*}

Claim: every edge is justified by the Cut Property

- Remember that satisfying the Cut Property implies that we have an MST
- This was very explicit in Prim's Algorithm

Prim's Minimum Spanning Tree Algorithm

$$
\begin{aligned}
X & =\{s\} \\
T & =\text { empty }
\end{aligned}
$$

while X is not V :
let $e=(u, v)$ be the cheapest edge of G with u in X and v not in X
add e to T
add v to X

Proof of Kruskal's Algorithm

Proving that we can use the Cut Property

- Consider each iteration where edge (u, v) is added to T^{*}
- Since $T^{*} U\{(u, v)\}$ has no cycle, T^{*} currently has no u->v path
- Thus, there must be a cut (A, B) separating u and v. For example:
- All findable from u in A
- All findable form vin B
- All other vertices can be partitioned arbitrarily
- Hence, (u, v) is the first crossing cut for (A, B)
- Additionally, it must be the cheapest such cut since we sorted the edges
- Finally, the edge (u, v) is justified by the Cut Property

Proof of Kruskal's Algorithm

What have we done?

We proved that Kruskal's outputs a spanning tree

- No cycles by definition
- Connectivity by the Empty Cut Lemma

We then proved that Kruskal's outputs the minimum spanning tree

- The Cut Property implies that we are left with the MST
- We showed that Kruskal's uses the Cut Property because the edges are sorted

Implementation of Kruskal's

Kruskal's Minimum Spanning Tree Algorithm

```
Sort E by edge cost
O(mlg}m
T = empty
For e in E:
\[
\begin{aligned}
& \text { if } T \cup\{(u, v)\} \text { has no cycles } \\
& \text { add } e \text { to } T
\end{aligned}
\]
```

How would you detect if adding (u,v) creates creates a cycle?

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in $E:$

$$
\begin{aligned}
& \text { if } \mathrm{T} \cup\{(\mathrm{u}, \mathrm{v})\} \text { has no cycles } \\
& \text { add e to } \mathrm{T}
\end{aligned}
$$

$$
O(m \lg m)+O(m) * O(n+m) \quad O\left(m n+m^{2}\right)
$$

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost T = empty

What can we change (should we change) to do better?

For e in E:

$$
\begin{aligned}
& \text { if } T \cup\{(u, v)\} \text { has no cycles } \\
& \text { add e to } T
\end{aligned}
$$

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost T = empty

What can we change (should we change) to do better?

For e in E:

$$
\begin{aligned}
& \text { if } T \cup\{(u, v)\} \text { has no cycles } \\
& \text { add e to } T
\end{aligned}
$$

The Union-Find Data Structure

- Also known as the disjoint-set data structure
- Used to maintain a partition of objects

Union-Find

Operations:

- Find (x) :
return the name of the group to which x belongs
- Union(Ci, Cj): merge the two partitions into a single partition

How does this help us with Kruskal's?

- What do we store in the data structure?
- What makes a group/partition?

Motivation

- Speed up the way in which we check for cycles.
- How would you implement the Union-Find data structure?
- Augment each vertex to include another piece of information: the name of its leader
- Or use a separate data structure (what kind? \rightarrow what operations matter?)
- Invariant: each vertex knows its leader
- How long does it take to check for a cycle now?

Checking for cycles

- Given an edge (u, v), we can check if u and v are in the same partition in constant time $\mathrm{O}(1)$.

$$
\operatorname{Find}(u)==\operatorname{Find}(v) ?
$$

What happens during the next iteration?

What's the catch?

Maintaining the Invariant

- Invariant: each vertex knows its leader

What is the maximum number of vertex leaders that must be fixed after a union?

Exercise Question 2

Union example.

Union-Find Data Structure

- Put every element in its own partition
- Every element has its own leader
- Join partitions by copying the leader of the larger partition elements to all elements of the smaller partition
- You can use an array or hash table to keep track of leaders
- No other information/memory is needed

Kruskal's Minimum Spanning Tree Algorithm

What happened?

Sort E by edge cost

 T = empty

Maximum number of leader updates?

How many times can we update the leader of a single vertex?

- We only update the leader of a vertex if we merge it with a bigger partition.
- How many times can we update a vertex's leader?
- (Or: How many times can we double the size of a partition?)

This is our global view of something happening inside the loop.

Kruskal's Minimum Spanning Tree Algorithm

Sort E by edge cost
$O(m \lg m)$
T = empty

For e in $E:$
if $\mathrm{T} U\{(\mathrm{u}, \mathrm{v})\}$ has no cycles $\quad O(1)$ just for the cycle check
add e to T
union

Cutting Edge

- Can we do better than $\mathrm{O}(\mathrm{m} \lg \mathrm{n})$?
- Yes!
- Average $O(m)$ using a randomized algorithm (1995)
- We do not actually know if a deterministic $O(m)$ algorithm exists.
- We do have a deterministic algorithm that is $\mathrm{O}(\mathrm{m} \alpha(\mathrm{n})$)
- α is the inverse Ackermann function
- Which is slower than the Iterated logarithm: $\lg { }^{*}$
- the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1
- An optimal deterministic algorithm was developed in 2002
- But we do not know the exact asymptotic complexity
- Just that it is between $O(m)$ and $O(m \alpha(n))$

\boldsymbol{x}	$\lg ^{\boldsymbol{*}} \boldsymbol{x}$
$(-\infty, 1]$	0
$(1,2]$	1
$(2,4]$	2
$(4,16]$	3
$(16,65536]$	4
$\left(65536,2^{65536}\right]$	5

