Kruskal’'s MST Algorithm

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Introduce Kruskal’s algorithms for MSTs
* Discuss disjoint sets

e Kruska’s exercise

Extra Resources

* Introduction to Algorithms, 3rd, chapter 23
* Algorithms llluminated Part 3, Chapter 15

Trick Question for the Day
Which is asymptotically bigger?

O(mlgn) or O(mlgm)

Minimum-Spanning-Tree Overview

Input: an undirected graph where each edge has an associated

Output: a minimum-spanning-tree
1. Connects the entire graph as a tree, but
2. Has a minimal cost

Assumptions:
1. The input graph is connected

2. The edges costs are distinct (only necessary/useful for our proof)

Cut Property: if e is the cheapest edge crossing a cut, then it must be in the MST

Kruskal’s
A greedy algorithm for finding the minimum spanning tree

Why are we learning another one?

 Kruskal’s will motivate a new data structure: (disjoint-set)
* It will also let us talk a bit about clustering

Can you think of another greedy algorithm for solving MST?

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty
Edge based
For e in E:
if T U {(u, v)} has no cycles
add e to T

1.

Exercise question 1.

In what order are the edges selected
using Kruskal’s Algorithm?

17

31

@ 29

67

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

Graph/Cut/Tree Lemmas and Properties

 Empty Cut Lemma: a graph is not connected if there exists a cut (A, B) with
zero crossing edges

* Double Crossing Lemma: suppose the cycle C has an edge crossing the cut
(A, B), then there must be at least one more edge in C that crosses the cut

* No Cycle Corollary: if e is the only edge crossing some cut (A, B), then it is
not in any cycle

e Cut Property: if e is the cheapest edge that crosses the cut (A, B) then it
must be in the MST

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)
Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?

* No cycles

e Connected

12

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in E:
if T U {(u, v)} has no cycles
add e to T

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in E:
if T U {(u, v)} has no cycles
add e to T

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)
Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?
* No cycles

e Connected

Proof of Kruskal’s Algorithm |

Proof of Connectivity

* Given the Empty Cut Lemma, we only need to show that Kruskal’s produces
a tree T* that crosses every cut.

* Fix a cut (A,B)

 Since G is connected, at least one of its edges crosses (A,B)

* Kruskal’s algorithm considers each edge once

* Let’s fast-forward to the first time that it encounters an edge crossing (A,B)
* Claim: this 1st edge is guaranteed to be in

* Given the No Cycle Corollary the claim is true

* |t is also the minimum edge to cross the cut (sorted edges)

Proof of Kruskal’s Algorithm

For the second part of the proof, we need to prove that T* is minimal
* We just finished proving that Kruskal’s outputs some spanning tree

Claim: every edge is justified by the Cut Property

 Remember that satisfying the Cut Property implies that we have an
MST

* This was very explicit in Prim’s Algorithm

Prim’s Minimum Spanning Tree Algorithm

X
T

1S}
empty

while X is not V:
let e = (u, v) be the cheapest edge of G
with u 1n and v
add e to T
add v to X

Proof of Kruskal’s Algorithm

Proving that we can use the Cut Property
e Consider each iteration where edge (u, v) is added to
* Since T* U {(u, v)} has no cycle, T* currently has no u->v path

* Thus, there must be a cut () separating u and v. For example:

e All findable from u in
e All findable form vin
* All other vertices can be partitioned arbitrarily

* Hence, (u, v) is the first crossing cut for (., B)
* Additionally, it must be the cheapest such cut since we sorted the edges

* Finally, the edge (u, v) is justified by the Cut Property

Proof of Kruskal’s Algorithm

What have we done?

We proved that Kruskal’s outputs a spanning tree
* No cycles by definition
e Connectivity by the Empty Cut Lemma

We then proved that Kruskal’s outputs the spanning tree
* The Cut Property implies that we are left with the MST

* We showed that Kruskal’s uses the Cut Property because the edges are
sorted

Implementation of Kruskal’s

Kruskal’s Minimum Spanning Tree Algorithm

T = empty

if T U {(u, v)} has no cycles
add e to T

How would you detect if adding (u,v) creates creates a cycle?

22

Kruskal’s Minimum Spanning Tree Algorithm

T = empty

For e in E:
T U LU, vk has no cycles
add e to T

O(m Ig m) + O(m) * O(n+m)

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty What can we change (should

we change) to do better?

For e in E:
if T U {(u, v)} has no cycles
add e to T

24

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty What can we change (should

we change) to do better?

For e in E:
if T U {(u, v)} has no cycles
add e to T

25

The Union-Find Data Structure

* Also known as the disjoint-set data structure
e Used to maintain a partition of objects

26

Union-Find

Operations:
* Find(x): return the name of the group to which x belongs
* Union(Ci, Cj): merge the two partitions into a single partition

27

How does this help us with Kruskal’s?

e What do we store in the data structure?
* What makes a group/partition?

28

Motivation

* Speed up the way in which we check for cycles.
* How would you implement the Union-Find data structure?

* Augment each vertex to include another piece of information: the
name of its
e Or use a separate data structure (what kind? = what operations matter?)

* How long does it take to check for a cycle now?

Checking for cycles

* Given an edge (u, v), we can check if u and v are in the same partition

in constant time O(1).
Find(u) == Find(v)?

What happens during
the next iteration?

What’s the catch?

Maintaining the Invariant

* Invariant: each vertex knows its leader

What is the maximum number
of vertex leaders that must be
fixed after a union?

Exercise Question 2

Union example.

Union-Find Data Structure

* Put every element in its own partition
* Every element has its own leader

* Join partitions by copying the leader of the larger partition elements
to all elements of the smaller partition

* You can use an array or hash table to keep track of leaders

* No other information/memory is needed

Kruskal’s Minimum Spanning Tree Algorithm

T = empty

if T U {(u, v)} has no cycles
add e to T
union

What do we have as a

running time now?

35

What happened?

T = empty
if T U { (U, V) } has no CycC les O(n+m) = O(1) (checking leaders)
add e to T
We don’t do this every iteration O(1) = O(n) (updating leaders)

union

36

Maximum number of leader updates?

How many times can we update the leader of a single vertex?

* We only update the leader of a vertex if we merge it with a bigger
partition.

* How many times can we update a vertex’s leader?
e (Or: How many times can we double the size of a partition?)

Kruskal’s Minimum Spanning Tree Algorithm

T = empty
For e in E: 0(m)
if T U {(u, v)} has no cycles
add e to T O (nlgn) for Union (not per iteration)
union

Technically thisis O(nlgn + mlg m)

) - e - e

Sort Union Loop Total

Cutting Edge

e Can we do better than O(m Ig n)?
* Yes!
Average O(m) using a randomized algorithm (1995)

We do have a deterministic algorithm that is O(m a(n))
° o is the inverse Ackermann function

Which is slower than the

* the number of times the logarithm function must be
iteratively applied before the result is less than or equal to 1

An optimal deterministic algorithm was developed in 2002
But we do not know the exact asymptotic complexity
 Just that it is between O(m) and O(m a(n))

We do not actually know if a deterministic O(m) algorithm exists.

X g x
(==, 1] 0
(1, 2] 1
(2, 4] 2
(4, 16] 3
(16, 65536] 4
(65536, 265536) | 5

