Greedy Scheduling

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Introduce greedy algorithms
- Discuss the greedy scheduling algorithm
- Discuss exchange argument proofs

Exercise

• Greedy scheduling

Extra Resources

- Introduction to Algorithms, 3rd, chapter 16
- Algorithms Illuminated Part 3: Chapter 13
- Lots of examples: <u>https://www.geeksforgeeks.org/greedy-algorithms/</u>

Greedy Algorithms

- Iteratively make myopic (short-sighted) decisions and hope it works
- Never go back and recheck/reevaluate that you were correct

Contrasting with Divide and Conquer

- It is generally easier to create greedy algorithms (good and bad to this)
- It is typically easier to analyze greedy algorithms (no master theorem)
- It is often harder to prove/understand the correctness of greedy algorithms
- It is common for greedy algorithms to be incorrect

Greedy Algorithms

Proofs of correctness

- It can sometimes feel like more of an art than a science
- 1. Proof by induction on the greedy decision
- 2. Proof by induction on an exchange argument
 - 1. Either by contraction
 - 2. Or by exchanging with the optimal solution
- 3. Whatever works...

Example of a greedy algorithm

• We've seen one greedy algorithm before. What was it?

- What path length does Dijkstra's output for S \rightarrow W?
- What is the correct shortest path length for S \rightarrow W?

Scheduling (ignoring concurrency)

You have a shared resource

For example, a processor

You have many jobs that need to use the resource

Each job j has:

- A <u>Priority</u> P_i that stands for the job's importance
- A <u>Duration</u> D_i that stands for the length of time to run the job

In what sequence should we complete the jobs?

Scheduling (ignoring concurrency)

In what sequence should we complete the jobs?

- What is our criteria? What do we want to optimize?
- Let's start by looking at job j's completion time C_i
- Given three jobs: $D_1 = 1$, $D_2 = 2$, $D_3 = 3$
- What is the completion time for each if they are scheduled in order?

Scheduling

Optimization objective: minimize the weighted sum of completion times $S_{cost} = \min[\sum_{j=1}^{n} P_j C_j]$

What is the weighted sum of completion times if we schedule the following jobs in order?

Job	J ₁	J ₂	J ₃
Duration	D ₁ = 1	D ₂ = 2	D ₃ = 3
Priority	P ₁ = 3	P ₂ = 2	P ₃ = 1

Time

Exercise Question 1, 2, and 3

Scheduling

Calculate the weighted sum of completion times for the following jobs if they are scheduled in the order: 1, 2, 3.

Job	J ₁	J ₂	J ₃
Duration	D ₁ = 1	D ₂ = 2	D ₃ = 3
Priority	P ₁ = 3	P ₂ = 2	P ₃ = 1
Completion			
Weight			

Weighted sum of completion times: ?

Greedy Scheduling

Our process for creating a greedy scheduling algorithm

- 1. Look at some special cases for our problem
- 2. Describe some possible greedy criteria
- 3. Compare our greedy criteria
- 4. Select the "best" one
- 5. Prove correctness if possible

Greedy Scheduling

Goal: devise a greedy algorithm to minimize the weighted sum of completion times

Why are we approaching this problem with a greedy algorithm?

- It's a pretty easy way to start.
- Compare the approach we go through in these slides with a Divide and Conquer approach

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

2. Describe some possible greedy criteria

What do we do when in the more general case:

Schedule highest priority first
 Schedule shortest duration first

 $P_i > P_j$ and $D_i > D_j$ (job i has higher priority and longer duration)

What are some simple scoring functions that *aggregate* our criteria?

We want a function for which jobs with a bigger score are scheduled first:

- Score increases for higher priorities
- Score increases for shorter times
- 1. Greedy Criterion 1: $P_i D_i$ (take the difference)
- 2. Greedy Criterion 2: P_i/D_i (take the ratio)

• Jobs will be ordered from biggest to smallest value

Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=2, D=1		
Job 2: P=5, D=1		

Which job should be scheduled first?

• Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
	Job 1: P=2, D=1	1	2
Highest priority	Job 2: P=5, D=1	4	5
	Total weighted sum		

• Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Same

Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=1, D=3		
Job 2: P=1, D=4		
Total weighted sum		

Which job should be scheduled first?

• Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Same Re

	Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Shortest time	Job 1: P=1, D=3	-2	1/3
	Job 2: P=1, D=4	-3	1/4
	Total weighted sum		

Which job should be scheduled first?

• Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Sa

	Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
Shortest time	Job 1: P=1, D=3	-2	1/3	
	Job 2: P=1, D=4	-3	1/4	
	Total weighted sum	1*3 + 1*7 = 10	1*3 + 1*7 = 10	Same Result
	Which job should be scheduled first?			

- Let's try to get them to disagree.
- Why does it matter if they don't produce the same result?
- One scoring metric must be better than the other
- Apply the two greedy algorithms and calculate their weighted sum of completion times

• Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5		
Job 2: P=1, D=2		
Total weighted sum		

• Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5	-2	3/5
Job 2: P=1, D=2	-1	1/2
Total weighted sum		

Which job goes first?

• Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5	-2	3/5
Job 2: P=1, D=2	-1	1/2
Total weighted sum		

Which job goes first?

What is the priority sum?

4. Select the "best" one

• Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)		
Job 1: P=3, D=5	-2	3/5		
Job 2: P=1, D=2	-1	1/2		
Total weighted sum	1*2 + 3*7 = 23	3*5 + 1*7 = 22		

Which job goes first?

What is the priority sum?

Which criteria is better?

5. Prove correctness if possible

Is criteria 2 optimal?

• We don't know yet.

Claim: Criteria 2 is optimal for minimizing the weighted sum of completion times.

• <u>We're going to prove this using an exchange argument!</u>

Exchange Arguments

- Consider your greedy solution, G
- Consider an alternative solution, A
 - A can be anything that is not G
 - Create A by changing G in some way
- Compare these solutions
 - Show that turning A into G makes A get better

Proof

- Assume that we have no ties (all P_i/D_i are distinct numbers)
- Fix an arbitrary input with n jobs
- Let's perform a proof using an exchange argument contradiction

Let G = the greedy schedule and A = the (alternative) optimal schedule

- Let's assume that A must be better than G (assume greedy is not optimal)
- To perform the contradiction, we must show that G is better than A, thus contradicting the purported optimality of A

Proof

Let G = the greedy schedule and A = the optimal schedule

- Assume that: $P_1/D_1 > P_2/D_2 > ... > P_n/D_n$
- We can just rename all jobs after we calculate their scores...
- Thus, G is just job 1 followed by job 2 etc. (1, 2, ..., n)

Reorder	Ratio	Length	Weight	Job ID
4	0.3	4	1	1
3	1.3	6	8	2
1	6.0	1	6	3
5	0.2	5	1	4
6	0.1	9	1	5
2	2.3	3	7	6

Let G = the greedy schedule and A = the optimal schedule

- Assume that: $P_1/D_1 > P_2/D_2 > ... > P_n/D_n$
- We can just rename all jobs after we calculate their scores...
- Thus, G is just job 1 followed by job 2 etc. (1, 2, ..., n)
- For A there must be at least two jobs that are "out of order"
 - Specifically, jobs i and j where i is scheduled after j, but S_i > S_j (for example, Job₅ after Job₆)
- The greedy schedule is the only schedule where the jobs are in order

(jobs i and j where i is scheduled after j, but $P_i/D_i > P_j/D_j$)

Job i has a larger greedy score

G vs A

(jobs i and j where i is scheduled after j, but $P_i/D_i > P_j/D_j$)

Job i has a larger greedy score

G vs A

(jobs i and j where i is scheduled after j, but $P_i/D_i > P_j/D_j$)

Job i has a larger greedy score

What is the weighted sum of completion times for each schedule?

After Before A Schedule Time exchange Before After G Schedule Time Cost(A) = Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)Cost(G) = Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)Implied by optimality of A Cost(A) < Cost(G)Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After) < Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After) Pj * (Tb + Dj) + Pi * (Tb + Dj + Di)< Pi * (Tb + Di) + Pj * (Tb + Di + Dj) Pj*Tb + Pj*Dj + Pi*Tb + Pi*Dj + Pi*Di < Pi*Tb + Pi*Di + Pj*Tb + Pj*Di + Pj*Dj

After Before A Schedule Time exchange Before After G Schedule Time Cost(A) = Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)Cost(G) = Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)Implied by optimality of A Cost(A) < Cost(G)Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After) < Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After) Pj * (Tb + Dj) + Pi * (Tb + Dj + Di)< Pi * (Tb + Di) + Pi * (Tb + Di + Di)</pre> Pj*Tb + Pj*Dj + Pi*Tb + Pi*Dj + Pi*Di $\langle Pi^*Tb + Pi^*Di + Pj^*Tb + Pj^*Di + Pj^*Dj$ Pi*Dj < Pj*Di **Contradiction** to how they were ordered by our greedy criteria Pi/Di < Pj/Dj

49

Multiple Re-orderings

Our proof doesn't account for this

Multiple Re-orderings

Example with Randomly Generated Jobs

				Gr	eedy	Unop	timized
Weight	Length	Ratio	Reorder	Time	Weighted	Time	Weighted
1	4	0.3	4	14	14	4	4
8	6	1.3	3	10	80	10	80
6	1	6.0	1	1	6	11	66
1	5	0.2	5	19	19	16	16
1	9	0.1	6	28	28	25	25
6 7 3	3	2.3	2	4	28	28	196
					175		387
	Weight 1 1 8 6 1 1 1 7	Weight Length 1 4 8 6 6 1 1 5 1 9 7 3	Weight Length Ratio 1 4 0.3 8 6 1.3 6 1 6.0 1 5 0.2 1 9 0.1 7 3 2.3	Weight Length Ratio Reorder 1 4 0.3 4 8 6 1.3 3 6 1 6.0 1 1 5 0.2 5 1 9 0.1 6 7 3 2.3 2	Weight Length Ratio Reorder Time 1 4 0.3 4 14 8 6 1.3 3 10 6 1 6.0 1 1 1 5 0.2 5 19 1 9 0.1 6 28 7 3 2.3 2 4	Weight Length Ratio Reorder Time Weighted 1 4 0.3 4 14 14 8 6 1.3 3 10 80 6 1 6.0 1 1 6 1 5 0.2 5 19 19 1 9 0.1 6 28 28 7 3 2.3 2 4 28	Meight Length Ratio Reorder Time Weighted Time 1 4 0.3 4 14 14 4 8 6 1.3 3 10 80 10 6 1 6.0 1 1 6 11 1 5 0.2 5 19 19 16 1 9 0.1 6 28 28 25 7 3 2.3 2 4 28 28

Summary of Greedy Scheduling

- Given n jobs, each with a priority and a duration
- Give each job a score based on their ratio of priority to duration
- Schedule jobs in <u>decreasing</u> order of their score
- This gives us an optimal schedule
- What do we do if we're given more jobs while these are running?
- Any issues with this scheme?
 - Some jobs might always be postponed.