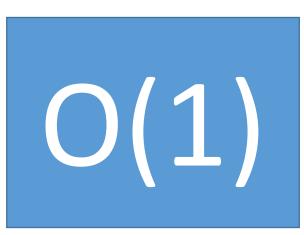
Universal Hashing

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:

- Insert
- Delete
- Look-up



What are they not good for?

Guaranteed constant running time for those operations if:

- 1. If the hash table is properly implemented, and
- 2. The data is non-pathological.

Hash Table Load

$$\alpha \coloneqq \frac{\# \ of \ objects \ in \ the \ hash \ table}{\# \ of \ buckets}$$

- What is the maximum possible α for <u>separate chaining</u>?
- What is the maximum possible α for <u>open addressing</u>?

Hash Table Load

$$\alpha \coloneqq \frac{\# \ of \ objects \ in \ the \ hash \ table}{\# \ of \ buckets}$$

- 1. $\alpha = O(1)$ is necessary to ensure that hash table operations happen in constant time
- 2. For open addressing, you typically need $\alpha \ll 1$ 0.75 is rule of thumb
- Thus, for good hash table performance you must control the load
- How do you control the load?

Pathological Data Sets

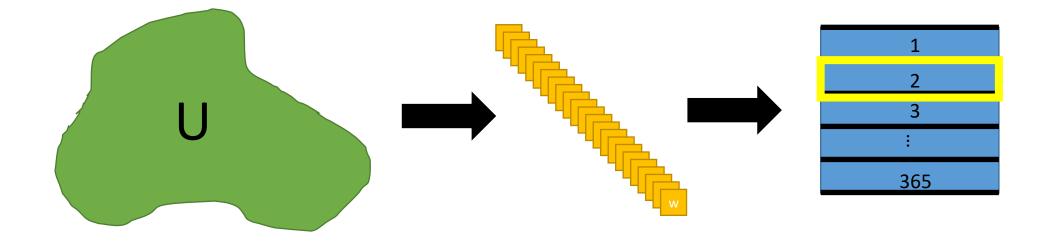
- We want our hash functions to "spread-out" the data (i.e., minimize collisions)
- Unfortunately, no perfect hash function exists (it's impossible)
- You can create a pathological data set for any hash function

Pathological Data Sets

Purposefully select only the elements that map to the same bucket.

Fix (set) the hash function $h(x) \rightarrow \{0, 1, ..., n-1\}$, where n is the number of buckets in the hash table and n << |U|

With the pigeonhole principle, there must exist a bucket i, such that at least |U|/n elements of U hash to i under h



Pathological Data Set Example

- We want to store student student ID numbers in a hash table.
- We will store about 30 students worth of data
- Let's use a hash table with 87 buckets
- Let's use the final three numbers as the hash

s = 30n = 87

def hash_fcn(id_number):
 return id_number % n

Output:

Number of unique student IDs: 30 Number of unique hash values: 28

Number of unique student IDs: 30 Number of unique hash values: 1

```
id_numbers = [randint(1000000, 99999999) for _ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash values)))
```

id_numbers_pathological = [round(num, -2) for num in id_numbers]
hash_values_pathological = map(hash_fcn, id_numbers_pathological)
print('Number of unique student IDs:', len(set(id_numbers_pathological)))
print('Number of unique hash values:', len(set(hash_values_pathological)))

Real World Pathological Data

- Denial of service attack
- A study in 2003 found that they could interrupt the service of any server with the following attributes:
 - 1. The server used an open-source hash table
 - 2. The hash table uses an easy-to-reverse-engineer hash function
- How does reverse engineering the hash function help an attacker?

Solutions to Pathological Data

Use a cryptographic hash function

• Infeasible to create pathological data for such a function (but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)

- 1. Create a family of hash functions
- 2. Randomly pick one at runtime

Universal Hashing

Let H be a set of hash functions mapping U to {0, 1, ..., n-1}

The family H is <u>universal</u> if and only if for all x, y in \cup

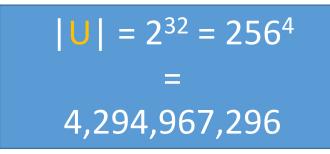
 $Pr(h(x) = h(y)) \leq 1/n$

Probability of a collision

where h is chosen uniformly at random from H

Basically, the hash functions don't all have the same flaw where they map a set of inputs to the same bucket.

Example: Hashing IP Addresses



988 billion

- What is \bigcup ? And how big is \bigcup ?
- U includes all IP addresses, which we'll denote as 4-tuples example: X = (x₁, x₂, x₃, x₄) where x_i is in [0, 255]
- Let n = some prime number that is near a multiple of the number of objects we expect to store example: |S| = 500, we set n = 997
- Let H be our set of hash functions example: $h(x) = A \text{ dot } X \text{ mod } n = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \text{ mod } n$ where $A = (a_1, a_2, a_3, a_4) \text{ and } a_i \text{ is in } [0, n-1]$ H includes all combinations the coefficients in A

n = 997

```
def ip_hash_fcn(X, A):
    return sum([x * a for x, a in zip(X, A)]) % n
```

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]

print("IP address ::", ".".join(map(str, ip_address)))
print("Hash coefficients ::", hash_coeff)
print("Hash value ::", ip_hash_fcn(ip_address, hash_coeff))

Hash value : 97

Example: Hashing IP Addresses

Theorem: the family H is universal

 $\frac{\# \ of \ functions \ that \ map \ x \ and \ y \ to \ the \ same \ location}{total \ \# \ of \ functions} \leq \frac{1}{n}$

- Let H be a set of hash functions mapping U to {0, 1, ..., n-1}
- The family H is universal if and only if for all x, y in U
- $Pr(h(x) = h(y)) \leq 1/n$
- where h is chosen uniformly at random from H

Hashing IP Addresses Proof

- Consider two distinct IP addresses X and Y
- Assume that $x_4 \neq y_4$ (they might differ in all parts)
 - The same argument will hold regardless of which part of the tuple we consider
- Based on our choice of h_i , what is the probability of a collision?
 - Or what fraction of h_i s cause a collision? Pr[h(X) = h(Y)]
- Where h_i is any of the hash function from H
- We want to show that ≤ 1/n of the billions of hash functions have a collision for X and Y

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by <u>randomly</u> generating four values for A

Collision between objects X and Y

$$h(X) = h(Y)$$

 $(A \cdot X) \mod n = (A \cdot Y) \mod n$

 $(a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \mod n = (a_1y_1 + a_2y_2 + a_3y_3 + a_4y_4) \mod n$ $0 = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4) \mod n$

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by <u>randomly</u> generating four values for A

 $0 = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4) \mod n$

Something must be different between X and Y. Let's assume that $X_4 \neq Y_4$

$$a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n$$

Fixed, non-zero value

Assume n is prime.

From here we are going to **fix** our choices of a_1 , a_2 , and a_3 and let a_4 be a random variable

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Something must be different between X and Y. Let's assume that $X_4 \neq Y_4$

Fixed, non-zero value $a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n$ Assume n is prime.

From here we are going to **fix** our choices of a_1 , a_2 , and a_3 and let a_4 be a random variable Principle of Deferred Decisions

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

How many choices of a_4 satisfy the above equation?

- Our RHS is fixed! It is just some number in [0, n-1] because X, Y, and a₁, a₂, a₃ are fixed
- If *n* is a prime number, then the LHS is equally likely to be any number from [0, n-1]
 - This claim requires some number theory to properly prove

Unique multiplicative

Thus, based on our choice for a_4 , we have that Pr(h(X) = h(Y)) = 1/n

Prime number for n

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	2
2	4
3	6
4	1
5	3
6	5

X = (x1, x2, x3, x4) where xi is in [0, 255] A = (a1, a2, a3, a4) and ai is in [0, n-1]

|S| = 500 n = 997

 $h(x) = (A \cdot X) \mod n$

And H includes all combinations for the coefficients in A

What do we want in the second column?

Prime number for n

$$n = 7, x_4 = 3, y_4 = 1$$

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	2
2	4
3	6
4	1
5	3
6	5

$$n = 7, x_4 = 4, y_4 = 1$$

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	3
2	6
3	2
4	5
5	1
6	4

Non-Prime number for n

x4-y4 shares factors with n

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	2
2	4
3	6
4	0
5	2
6	4
7	6

a_4	$a_4(x_4 - y_4) \mod n$
0	0
1	3
2	6
3	1
4	4
5	7
6	2
7	5 23

Summary

- We cannot create a hash function that prevents creation of a pathological dataset
- As long as the hash function is known, a pathological dataset can be created
- We can create families of hash functions that make it infeasible to guess which hash function is in use