Universal Hashing

https://cs.pomona.edu/classes/cs140/

Hash Tables

Operations:

- Insert
- Delete
- Look-up

Guaranteed constant running time for those operations if:

1. If the hash table is properly implemented, and
2. The data is non-pathological.

Hash Table Load

$$
\alpha:=\frac{\# \text { of objects in the hash table }}{\# \text { of buckets }}
$$

- What is the maximum possible α for separate chaining?
- What is the maximum possible α for open addressing?

Hash Table Load

$$
\alpha:=\frac{\# \text { of objects in the hash table }}{\# \text { of buckets }}
$$

1. $\alpha=O(1)$ is necessary to ensure that hash table operations happen in constant time
2. For open addressing, you typically need $\alpha \ll 10.75$ is rule of thumb

- Thus, for good hash table performance you must control the load
- How do you control the load?

Pathological Data Sets

- We want our hash functions to "spread-out" the data (i.e., minimize collisions)
- Unfortunately, no perfect hash function exists (it's impossible)
- You can create a pathological data set for any hash function

Pathological Data Sets

Purposefully select only the elements that map to the same bucket.

Fix (set) the hash function $h(x) \rightarrow\{0,1, \ldots, n-1\}$, where n is the number of buckets in the hash table and $n \ll|U|$

With the pigeonhole principle, there must exist a bucket i, such that at least |U|/n elements of U hash to i under h

Pathological Data Set Example

- We want to store student student ID numbers in a hash table.
- We will store about 30 students worth of data
- Let's use a hash table with 87 buckets
- Let's use the final three numbers as the hash

$$
\begin{aligned}
& \mathbf{s}=30 \\
& \mathrm{n}=87
\end{aligned}
$$

def hash_fcn(id_number): return id_number \% n

Output:

Number of unique student IDs: 30
Number of unique hash values: 28

Number of unique student IDs: 30 Number of unique hash values: 1
id_numbers $=$ [randint(1000000, 9999999) for_ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash_values)))
id_numbers_pathological $=$ [round(num, -2) for num in id_numbers] hash_values_pathological = map(hash_fcn, id_numbers_pathological) print('Number of unique student IDs:' , len(set(id_numbers_pathological))) print('Number of unique hash values:', len(set(hash_values_pathological)))

Real World Pathological Data

- Denial of service attack
- A study in 2003 found that they could interrupt the service of any server with the following attributes:

1. The server used an open-source hash table
2. The hash table uses an easy-to-reverse-engineer hash function

- How does reverse engineering the hash function help an attacker?

Solutions to Pathological Data

Use a cryptographic hash function

- Infeasible to create pathological data for such a function (but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)

1. Create a family of hash functions
2. Randomly pick one at runtime

Universal Hashing

Let H be a set of hash functions mapping U to $\{0,1, \ldots, \mathrm{n}-1\}$

The family H is universal if and only if for all x, y in U

$$
\operatorname{Pr}(h(x)=h(y)) \leq 1 / n
$$

```
Probability of a collision
```

where h is chosen uniformly at random from H

Basically, the hash functions don't all have the same flaw where they map a set of inputs to the same bucket.

Example: Hashing IP Addresses

- What is \cup ? And how big is \cup ?
- U includes all IP addresses, which we'll denote as 4-tuples example: $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ where x_{i} is in $[0,255$]
- Let $\mathrm{n}=$ some prime number that is near a multiple of the number of objects we expect to store
example: $|\mathrm{S}|=500$, we set $\mathrm{n}=997$
- Let H be our set of hash functions
example: $h(x)=A \operatorname{dot} X \bmod n=\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right) \bmod n$ where $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and a_{i} is in $[0, n-1]$ H includes all combinations the coefficients in A

$$
\begin{gathered}
|H|=n^{4} \\
= \\
988 \text { billion }
\end{gathered}
$$

```
n = 997
def ip_hash_fcn(X, A):
    return sum([x * a for x, a in zip(X, A)]) % n
ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]
print("IP address :", ".".join(map(str, ip_address)))
print("Hash coefficients :", hash_coeff)
print("Hash value :", ip_hash_fcn(ip_address, hash_coeff))
```



```
Hash value

\section*{Example: Hashing IP Addresses}

Theorem: the family H is universal
\(\frac{\# \text { of functions that map } x \text { and } y \text { to the same location }}{\text { total } \# \text { of functions }} \leq \frac{1}{n}\)
- Let H be a set of hash functions mapping U to \(\{0,1, \ldots, \mathrm{n}-1\}\)
- The family \(H\) is universal if and only if for all \(x, y\) in \(U\)
- \(\operatorname{Pr}(h(x)=h(y)) \leq 1 / h\)
- where \(h\) is chosen uniformly at random from \(H\)

\section*{Hashing IP Addresses Proof}
- Consider two distinct IP addresses \(X\) and \(Y\)
- Assume that \(x_{4} \neq y_{4}\) (they might differ in all parts)
- The same argument will hold regardless of which part of the tuple we consider
- Based on our choice of \(h_{\mathrm{i}}\), what is the probability of a collision?
- Or what fraction of \(h_{i}\) s cause a collision? \(\operatorname{Pr}[h(X)=h(Y)]\)
- Where \(h_{i}\) is any of the hash function from \(H\)
- We want to show that \(\leq 1 / n\) of the billions of hash functions have a collision for \(X\) and \(Y\)

Theorem: for any possible hash function, the probability of a collision between objects \(X\) and \(Y\) is \(\leq \frac{1}{n}\)
Hash functions are selected from the hash family by randomly generating four values for \(A\)

Collision between objects \(X\) and \(Y\)
\[
h(X)=h(Y)
\]
\[
\begin{gathered}
(A \cdot X) \bmod n=(A \cdot Y) \bmod n \\
\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right) \bmod n=\left(a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+a_{4} y_{4}\right) \bmod n \\
0=a_{1}\left(y_{1}-x_{1}\right)+a_{2}\left(y_{2}-x_{2}\right)+a_{3}\left(y_{3}-x_{3}\right)+a_{4}\left(y_{4}-x_{4}\right) \bmod n
\end{gathered}
\]

Hash functions are selected from the hash family by randomly generating four values for \(A\)
\[
0=a_{1}\left(y_{1}-x_{1}\right)+a_{2}\left(y_{2}-x_{2}\right)+a_{3}\left(y_{3}-x_{3}\right)+a_{4}\left(y_{4}-x_{4}\right) \bmod n
\]

Something must be different between \(X\) and \(Y\). Let's assume that \(x_{4} \neq y_{4}\)
\[
a_{4}\left(x_{4}-y_{4}\right) \bmod n=a_{1}\left(y_{1}-x_{1}\right)+a_{2}\left(y_{2}-x_{2}\right)+a_{3}\left(y_{3}-x_{3}\right) \bmod n
\]

Fixed, non-zero value
Assume n is prime.

From here we are going to fix our choices of \(a_{1}, a_{2}\), and \(a_{3}\) and let \(a_{4}\) be a random variable
```

Principle of Deferred Decisions

```

We want to show that for any value of \(a_{4}\) we have a \(\frac{1}{n}\) chance of a collision.

Something must be different between \(X\) and \(Y\). Let's assume that \(x_{4} \neq y_{4}\)
Fixed, non-zero value
\(a_{4}\left(x_{4}-y_{4}\right) \bmod n=a_{1}\left(y_{1}-x_{1}\right)+a_{2}\left(y_{2}-x_{2}\right)+a_{3}\left(y_{3}-x_{3}\right) \bmod n\)

From here we are going to fix our choices of \(a_{1}, a_{2}\), and \(a_{3}\) and let \(a_{4}\) be a random variable Principle of Deferred Decisions

We want to show that for any value of \(a_{4}\) we have a \(\frac{1}{n}\) chance of a collision.

How many choices of \(a_{4}\) satisfy the above equation?
- Our RHS is fixed! It is just some number in \([0, n-1]\) because \(X, Y\), and \(a_{1}, a_{2}, a_{3}\) are fixed
- If \(n\) is a prime number, then the LHS is equally likely to be any number from [0, \(n-1]\)
- This claim requires some number theory to properly prove

Unique multiplicative

Thus, based on our choice for \(\mathrm{a}_{4}\), we have that \(\operatorname{Pr}(h(X)=h(Y))=1 / n\)

\section*{Prime number for \(n\)}
\[
n=7, x_{4}=3, y_{4}=1
\]
\begin{tabular}{|c|c|}
\hline\(a_{4}\) & \(a_{4}\left(x_{4}-y_{4}\right) \bmod n\) \\
\hline 0 & 0 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline 3 & 6 \\
\hline 4 & 1 \\
\hline 5 & 3 \\
\hline 6 & 5 \\
\hline
\end{tabular}
\[
\begin{aligned}
& X=(x 1, x 2, x 3, x 4) \text { where } x i \text { is in }[0,255] \\
& A=(a 1, a 2, a 3, a 4) \text { and ai is in }[0, n-1] \\
& |S|=500 \\
& n=997 \\
& h(x)=(A \cdot X) \bmod n \\
& \text { And } H \text { includes all combinations for the coefficients in } A
\end{aligned}
\]

\section*{What do we want in the second column?}

\section*{Prime number for \(n\)}
\[
n=7, x_{4}=3, y_{4}=1
\]
\begin{tabular}{|c|c|}
\hline\(a_{4}\) & \(a_{4}\left(x_{4}-y_{4}\right) \bmod n\) \\
\hline 0 & 0 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline 3 & 6 \\
\hline 4 & 1 \\
\hline 5 & 3 \\
\hline 6 & 5 \\
\hline
\end{tabular}
\[
n=7, x_{4}=4, y_{4}=1
\]
\begin{tabular}{|c|c|}
\hline\(a_{4}\) & \(a_{4}\left(x_{4}-y_{4}\right) \bmod n\) \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 2 \\
\hline 4 & 5 \\
\hline 5 & 1 \\
\hline 6 & 4 \\
\hline
\end{tabular}

Non-Prime number for \(n\)
\[
\mathrm{n}=8, \mathrm{x}_{4}=3, \mathrm{y}_{4}=1
\]
\begin{tabular}{|c|c|}
\hline\(a_{4}\) & \(a_{4}\left(x_{4}-y_{4}\right) \bmod n\) \\
\hline 0 & 0 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline 3 & 6 \\
\hline 4 & 0 \\
\hline 5 & 2 \\
\hline 6 & 4 \\
\hline 7 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(a_{4}\) & \(a_{4}\left(x_{4}-y_{4}\right) \bmod n\) \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 1 \\
\hline 4 & 4 \\
\hline 5 & 7 \\
\hline 6 & 2 \\
\hline 7 & 5 \\
\hline
\end{tabular}

\section*{Summary}
- We cannot create a hash function that prevents creation of a pathological dataset
- As long as the hash function is known, a pathological dataset can be created
- We can create families of hash functions that make it infeasible to guess which hash function is in use```

