Hash Tables

https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

* Discuss hash tables
 Discuss collision handling methods

* Collision probabilities

Programming Languages

Python (2 and 3):
C++:

Java:

Rust:

Swift:

JavaScript:

C#:

Built-In ({ } and set ()) The Google Swiss Table is better.

unordered map and unordered set
HashMap and HashSet
HashMap and HashSet

Dictionary and Set

Built-In hash map {} and a set object Set ()

Dictionary and HashSet

https://abseil.io/blog/20180927-swisstables

“To get this out of the way: you should probably
just use Vec or HashMap.”

-- Rust Documentation

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html

nash_table = {} Indices “

Hash Value

O 0 N O un o W N P, O

nash_table = {} Indices “

Hash Value

hash_table["Tony"] = 1

O 0 N O un o W N P, O

nash_table = {} Indices “

Hash Value
O 2513555521146574408 "Tony"

hash_table["Tony"] = 1

O 0 N O un o W N P, O

nash_table = {} Indices “

Hash Value
O 2513555521146574408 "Tony"

hash_table["Tony"] = 1
haSh_table["Anthony"] — (Il ll, llbll, "C")

O 00 N O 1 & W N —~» O
[EEY

nash_table = {} Indices “

Hash Value
O 2513555521146574408 "Tony"
1 -5449849882770900115 "Anthony"

hash_table["Tony"] = 1
haSh_table["Anthony"] — (ll ll, llbll, "C")

("a", "b", "c")

O 00 N O 1 & W N —~» O
[EEY

hash_table = {}

hash _table["Tony"] =1
hash_table["Anthonyll] — (Ilall, llbll, IICII)

hash_table["Antonius"] = "Marcus"

O 0 N O un o W N P, O

Create a sequence of hash values.

i Hash Value Key p

O 2513555521146574408 "Tony"
1 -5449849882770900115 "Anthony"
2 845797555091548595 "Antonius"

("a", "b", "c")

"Marcus"

10

nash_table = {} Indices “

Hash Value

2 0 2513555521146574408 "Tony"

1 -5449849882770900115 "Anthony"
2 845797555091548595 "Antonius"

hash _table["Tony"] =1
hash_table["Anthonyll] — (ll ll, llbll) IICII)

hash_table["Antonius"] = "Marcus"

("a", "b", "c")

O 00 N O 1 & W N —~» O
[EEY

"Marcus"

11

nash_table = {} Indices “

0 Hash Value
hash_table["Tony"] = 1 1 2 O 2513555521146574408 "Tony"
hash table["Anthony"] = ("a", "b", "c") 2 1 -5449849882770900115 "Anthony"
hash_table["Antonius"] = "Marcus” 3 2 845797555091548595 "Antonius"
hash_table["Antonio"] = [1, "two", [3]] 4 3 -6544454146661121116 "Antonio"

5 1

6 3 1

7

8 O

S "Marcus” (fa’, 0", "c”)

[1, "two", [3]]

12

nash_table = {} Indices “

0 Hash Value
hash_table["Tony"] = 1 1 2 O 2513555521146574408 "Tony"
hash table["Anthony"] = ("a", "b", "c") 2 1 -5449849882770900115 "Anthony"
hash_table["Antonius"] = "Marcus” 3 2 845797555091548595 "Antonius"
hash table["Antonio"] = [1, "two", [3]] 4 3 -6544454146661121116 "Antonio"

5 1

6 3 1

7

8 O

S "Marcus” (fa’, 0", "c”)

[1, "two", [3]]

13

nash_table = {} Indices “

0 Hash Value
hash_table["Tony"] = 1 1 2 O 2513555521146574408 "Tony"
hash_table["Anthony"] = ("a", "b", "c") 2 1 -5449849882770900115 "Anthony"
hash_table["Antonius"] = "Marcus” 3 2 845797555091548595 "Antonius"
hash table["Antonio"] = [1, "two", [3]] 4 3 -6544454146661121116 "Antonio"

5 1
Perform a Lookup R 1
get_value = hash_table["Anthony"] ; 0

9 "Marcus” (fa®, "b%, "c’)

[1, "two", [3]]

14

nash_table = {} Indices “

Hash Value

2 0 2513555521146574408 "Tony"

1 -5449849882770900115 "Anthony"
2 845797555091548595 "Antonius"
3 -6544454146661121116 "Antonio"

hash _table["Tony"] =1
hash_table["Anthony"] = ("a", "b", "c")
hash_table["Antonius"] = "Marcus"

hash_table["Antonio"] = [1, "two", [3]]

Perform a Lookup

get value = hash_table["Anthony"]

("a", "b", "c")

O 0 N O un o W N P, O
[EEY

"Marcus"

Remove an element

del hash_table["Anthony"]

[1, "two", [3]]

15

nash_table = {} Indices “

Hash Value

2 0 2513555521146574408 "Tony"

1 -5449849882770900115 "Anthony"
2 845797555091548595 "Antonius"
3 -6544454146661121116 "Antonio"

hash _table["Tony"] =1
hash_table["Anthony"] = ("a", "b", "c")
hash_table["Antonius"] = "Marcus"

hash_table["Antonio"] = [1, "two", [3]]

Perform a Lookup

get value = hash_table["Anthony"]

("a", "b", "c")

O 0 N O un o W N P, O

"Marcus"

Remove an element

del hash_table["Anthony"]

[1, "two", [3]]

get value2 = hash _table["Antonius"]

16

hash_table = {) Indices “

0 Hash Value
hash_table["Tony"] = 1 1 2 O 2513555521146574408 "Tony"
hash_table["Anthony"] — (ll ll, "b", "C") 2 1 '5449849882770900115 Anthony
hash_table["Antonius"] = "Marcus" 3 2 845797555091548595 Antonius
hash_table["Antonio"] = [1, "two", [3]] 4 3 -6544454146661121116 “"Antonio

5 1

: 6 3
some_list = [1, "two", (1, 1, 1)] 1

7
hash_table[some_list] = "Antonio" B
some_list.append("hi class") ("a", "b", "c")

S "Marcus"

get value = hash_table[some list]

Should this work? What would it do?

[1, "two", [3]]

https://github.com/python/cpython/blob/master/Objects/dictobject.c

17

https://github.com/python/cpython/blob/master/Objects/dictobject.c

Common Hash Function

def djb2(s):
hash = 5381 # some prime number

magic = 33 # magic number that works well
for c in s:

hash = hash * magic + ord(c)
return hash & OxFFFFFFFF

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-unigueness-and-speed

18

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Hash Tables

* One of the most useful and used data structures
* They do not support many operations
* But they are amazing at the operations they do support

* They act like an array with a couple of key differences

Hash Tables

Operations:
* |[nsert

What are they

?
+ Lookup not good for:

Guaranteed constant running time for those operations if:
1. If the hash table is properly implemented, and
2. The data is non-pathological.

20

Example Applications

Removing Duplicates
* Given a stream of objects

* Don’t add object if it already exists

e Distinct visitors to a web site
Blacklist or whitelist

* Creating an efficient web crawler

Two-Sum Problem

* Given an array of integers A and a
target sum

e Goal: determine if any two
numbers sum to

* What is a naive approach to this
problem?

 What is a slightly better approach?

 What is an optimal approach based
on hash-tables?

Other applications

e Used for symbol tables in compilers

* In search algorithms you can ensure that you don’t test the same
configuration twice

22

Great Data Structure—Easy to butcher

* Let U be the universe of all possible objects
* (all possible IP address, all possible student names, all chess configurations, etc.)

* We want to maintain an evolving subset S of U that is a Size

* Naive solution #1: is to create an array that has equal to |U]|
* No collisions but requires a huge amount of space

* Naive solution #2: use a linked list instead
* Relatively memory efficient, but everything collides

Great Data Structure—Easy to butcher

* Let U be the universe of all possible objects
* (all possible IP address, all possible student names, all chess configurations, etc.)

* We want to maintain an evolving subset S of U that is a Size

Hash table:
* Let n be approximately equal to |S|, where n is the # of buckets

* Choose a hash functionh(x) - {06, 1, .., n-1} where xisan
object in

* Use an array A of length n, and store objects at A[h()]

Hash Table A with n buckets

fo) Ul N w N = o

Hash Table A with n buckets

fo) Ul N w N = o

Hash Table A with n buckets

Collisions

 What if two keys (objects) result in the same index?
* |s this really a problem? Does it happen very often?

Birthday problem
e Consider n people with birthdays distributed uniformly at random.

 How large does n need to be before there is at least a 50% chance that two
people have the same birthday?

Birthday Problem

50% Change
of Collision

—

Exercise Question 1

 What if two keys (objects) result in the same index?
* |s this really a problem? Does it happen very often?

Birthday problem

e Consider n people with birthdays distributed uniformly at random.

 How large does n need to be before there is at least a 50% chance that two
people have the same birthday?

Exercise Question 1

 What if two keys (objects) result in the same index?
* |s this really a problem? Does it happen very often?

Birthday problem
e Consider n people with birthdays distributed uniformly at random.

 How large does n need to be before there is at least a 50% chance that two
people have the same birthday?

a. 367
b. 57
c. 184
d. 23

Break Video

Exercise Question 1

 What if two keys (objects) result in the same index?
* |s this really a problem?

Birthday problem
e Consider n people with birthdays distributed uniformly at random.

 How large does n need to be before there is at least a 50% chance that two
people have the same birthday?
a. 367 - 100%
b. 57 -2 99%
c. 184 - 99.9999%
d. 23 - 50%

: : x n-i__,—x(x—-1)/2n
Exercise Question 2 i=1 7 €

* We have a hash table implemented using an array with 100 buckets.

* Assume that we have a perfect hash function (generates hash values
uniformly at random).

* What is the probability of any collisions if we try to store:
* 10 objects?
e 20 objects?
* 30 objects?

* Let’s use a slightly more accurate equation.

: : x n-i__,—x(x—-1)/2n
Exercise Question 2 i=1 7 €

* We have a hash table implemented using an array with 100 buckets.

* Assume that we have a perfect hash function (generates hash values
uniformly at random).

* What is the probability of any collisions if we try to store:
e 10 objects? |36% 100%
e 20 objects? | 8%
* 30 objects? |29%
1 — e~ XD/ \yhere n is 100

* Let’s use a slightly more acct
0%

| _——

Collisions

* Even with a uniformly random hash function you still get quite a few
collisions with a small data set.

Two common methods for resolving collisions
1. Separate Chaining
2. Open Addressing

In practice, we use something similar to these (e.g., the Python example)

Method 1: Separate Chaining

NULL

NULL

NULL

NULL

NULL

Array

37

h(A) = 53 726
Method 1: Separate Chaining HORERS
h(B) = 224 930
h(B) %5 =0

h(C) = 23 321
h(C) %5 =1

Array

38

Method 1: Separate Chaining

Array

h(A)
h(A)

h(B)
h(B)

h(C)
h(C)

h(D)
h(D)

h(E)
h(E)

X 1 o

X 1

X 1

X i

53 726
5 =1
224 930
5 =20
23 321
5 =1
7 894
5 =4
919 271
5 =1

39

h(A) = 53 726

Method 1: Separate Chaining HORERS
h(B) = 224 930

h(B) %5 =0

= 23 321

%5 =1

= 7 894

%5 =4
= 919 271

%5 =1

Array

40

h(A) = 53 726
h(A) %5 =1

Method 2: Open Addressing . - 224 936

h(B) %5 =1
(h(B) + 1) %5 = 2

Only one object per bucket
Hash functions now specify a sequence B

1. Linear probing: call the hash function and find the next
available spot in the array

Array

41

h(A) = 53 726
h(A) %5 =1

Method 2: Open Addressing . - 224 936

h(B) %5 =1
(h(B) + 1) %5 = 2

Only one object per bucket
Hash functions now specify a sequence B

1. Linear probing: call the hash function and find the next
available spot in the array

Array

42

Method 2: Open Addressing

hi(A) =
. hi(A) % 5 =1
Only one object per bucket =
. . h1(B) = 224 936

Hash functions now specify a sequence|ni(:) % s = 1

(h1(B) + h2(B)) % 5 = 4

1. Linear probing: call the hash function and find the next
available spot in the array

2. Double hashing:

* Requires two hash functions

 Call the first hash function to get an index

 Call the second hash function on collision to get an offset
e Add the offset to the index

* If there is another collision add the offset again

Array

43

Method 2: Open Addressing

hi(A) =
. hi(A) % 5 =1
Only one object per bucket =
. . h1(B) = 224 936

Hash functions now specify a sequence|ni(:) % s = 1

(h1(B) + h2(B)) % 5 = 4

1. Linear probing: call the hash function and find the next
available spot in the array

2. Double hashing:

* Requires two hash functions

 Call the first hash function to get an index

 Call the second hash function on collision to get an offset
e Add the offset to the index

* If there is another collision add the offset again

Array

44

Python 3.6 Dictionaries Advantages

https://stackoverflow.com/questions/39980323/are-dictionaries-ordered-in-python-3-6

d = {"timmy": 'red’, 'barry': 'green’, 'guido’: 'blue'}

entries = |

['__l' l__l' I__I]’

[-8522787127447073495, 'barry', 'green’],
['__l' l__l' I__I]’

['__l' l__l' I__I]’

['__l' l__l' I__I]’

[-9092791511155847987, 'timmy’, 'red’],
['__l' l__l' I__I]’

[-6480567542315338377, 'guido’, 'blue’]

45

https://stackoverflow.com/questions/39980323/are-dictionaries-ordered-in-python-3-6

Python 3.6 Dictionaries Advantages

https://stackoverflow.com/questions/39980323/are-dictionaries-ordered-in-python-3-6

d = {"timmy": 'red’, 'barry': 'green’, 'guido’: 'blue'}

entries = [
l__l' I__l' |__1]’
-8522787127447073495, 'barry’, 'green’],

1 [| 1 I]
) I U

092791511155847987 timmy'—%

indices = [None, 1, None, None, None, 0, None, 2]
entries = |
[-9092791511155847987, 'timmy', 'red’],

[
[
[
['--
[- ’],
[-
['--
[-6480567542315338377, 'guido’,

[-6480567542315338377, 'guido’, 'blue’]

[-8522787127447073495, 'barry', 'green’],

i
an

https://stackoverflow.com/questions/39980323/are-dictionaries-ordered-in-python-3-6

Python 3.6 Dictionaries Advantages

* Uses 30% to 95% less memory

* Resizing the hash table only changes the location of the indices, the
indices themselves do not change

e Better cache utilization

Hash Functions

* What makes a good hash function?

* Properties of a good hash function
1. Should lead to the smallest number of collisions as possible
2. It shouldn’t be too much work to compute the hash

(required for every lookup, insertion, or deletion)
* What is the worst case for a hash function?

def hash_fcn():
return 1

Example

Keys are 10-digit phone numbers, |U| = 10710, we select n = 1073
* Terrible hash function:
* OK (not great) hash function:

417-836-6646 417-836-8745
417-836-5438 417-836-4834
417-836-4944 417-836-5789
417-836-5930 417-836-5224
417-836-5026 417-836-4157

Passable Hash Function

Hash Function Compression

Objects Integers

Take strings as objects for example
* Hash code could be to create a unique number from the characters
e Compression function would be to take the integer mod n

How do you choose n (the number of buckets)?

e Choose n to be a prime number (on the order of the # of objects to store)
* Don’t choose a value too near to a power of 2

* Don’t choose a value too near to a power of 10

50

Hash Table Summary

2.

3.

4,

5.

Make a big array
Create a function that converts elements into integers (hashing)

Store elements in the array at the index specified by the hash function
Do something interesting if two elements get the same index (collision)

Rehash (resize):
* when the load factor exceeds 75% (rule of thumb)
* by increasing size by a factor of 1.5 (rule of thumb)

