Red-Black Trees (A Balanced BST)

https://cs.pomona.edu/classes/cs140/
Some notes taken from
http://www.geeksforgeeks.org/

Outline

Topics and Learning Objectives

- Discuss tree balancing (rotations, insertions, deletions)
- Prove the balancing characteristic of red-black trees
- Discuss the running time of red-black tree operations

Exercise

- Red-black tree activity

Extra Resources

- Introduction to Algorithms, 3rd, chapter 13
- https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Implementations

Although Red-Black trees are not the most modern choice, they do appear in

- Java: TreeMap<K,V>
- C++: std::map

Balanced Binary Search Trees

- Why is balancing important?
-What is the worst case for a binary tree?
- Balanced tree: the height of a balanced tree stays $\mathrm{O}(\lg \mathrm{n})$ after insertions and deletions
- Many different types of balanced search trees:
- AVL Tree, Splay Tree, B Tree, Red-Black Tree

Red-Black Trees Invariants

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Can a Red-Black tree of any height have only black nodes?

Red-Black Trees

Can a "chain" be a red-black tree?

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Red-Black Trees

Red-Black Trees

Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

How did Red-Black Trees get their name?

Plan

1. Prove the height property of a Red-Black tree.
2. Look at the insertion operation

Red-Black Tree Height

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)=O(\lg n)$
- Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

Red-Black Tree Height

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)$
- Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

Red-Black Tree Height

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)$
- Observation: if every root-NULL path has $\geq \mathrm{k}$ nodes, then the tree includes a perfectly balanced top portion with k levels

$$
\text { Exercise question } 1
$$

Red-Black Tree Height

k	n
1	1
2	

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)$
- Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

Red-Black Tree Height

k	n
1	1
2	3
3	
4	
5	
6	

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)$
- Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

What is the minimum number of nodes (n) in the tree based on k?

Red-Black Tree Height

- Claim: every Red-Black tree has a $t_{\text {height }} \leq 2 \lg (n+1)$
- Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

What is the minimum number of nodes (n) in the tree based on k?

Red-Black Tree Height

$2^{k}-1$ was the minimum number of nodes

- So, we have:

$$
\begin{gathered}
n \geq 2^{k}-1 \\
\lg (n+1) \geq k
\end{gathered}
$$

- So, we now have an upper bound on k.
- But how does k help us bound the actual height of the tree?
- What does k tell us about the number of black nodes you can have?
- What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has $\geq \mathrm{k}$ nodes, then the tree includes a perfectly balanced top portion with k levels

Red-Black Tree Height

- So, we have:

$$
\begin{gathered}
n \geq 2^{k}-1 \\
\lg (n+1) \geq k
\end{gathered}
$$

- So, we now have an upper bound on k.
- But how does k help us bound the actual height of the tree?
- What does k tell us about the number of black nodes you can have?
- What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has $\geq \mathrm{k}$ nodes, then the tree includes a perfectly balanced top portion with k levels

At most k black nodes
At most $\lg (\mathrm{n}+1)$ black nodes

Red-Black Tree Height

- So, we have:

$$
n \geq 2^{k}-1
$$

- so, How many red nodes
- Bu on any root-Null path? ${ }^{\text {height of the tree? }}$

- What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has $\geq \mathrm{k}$ nodes, then the tree includes a perfectly balanced top portion with k levels

At most k black nodes
At most $\lg (\mathrm{n}+1)$ black nodes

Red-Black Tree Height

- Thus: in a Red-Black tree with n nodes, there is a root-NULL path with at most $\lg (n+1)$ black nodes
- By invariant (4): every root-NULL path has $\leq \lg (n+1)$ black nodes
- By invariant (3): every root-NULL path has $\leq \lg (n+1)$ red nodes
- Thus, a total of $\leq 2 \lg (n+1)$ nodes on every root-NULL path

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Red-Black Trees

- If our tree can be colored as a Red-Black tree, then every root-NULL path has $\leq 2 \lg (n+1)$ nodes total
- The longest path will dictate the height of the tree
- So, height of the tree is at most $2 \lg (n+1) \quad \lg (n+1)=\lg n+\lg (1+1 / n)=\lg n+C$
- A tree cannot contain a chain of three nodes
- Thus, the height of the tree is $\mathrm{O}(\mathrm{Ig} \mathrm{n})$
- Why is this important?

Draw a Worst-Case (most lopsided) Red-Black Tree with a minimum of 3 black nodes on every root-NULL path

Red-Black Trees, Inserting a Node

1. Insert the new node
2. Color it red
3. Fix colors to enforce Red-Black Tree invariants
4. This is a recursive process

Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)

Why?

2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
a) If aunt is red
I. Change color of parent and aunt to black
II. Change color of the new node and the grandparent to red
III. Go to step (2) and treat grandparent as new node
Why?
Why?

New Node

Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)

Why?

2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
a) If aunt is red
I. Change color of parent and aunt to black
II. Change color of the new node and the grandparent to red
III. Go to step (2) and treat grandparent as new node

New Node

Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
a) If aunt is red
b) If aunt is black
I. Put the new node, its parent, and the grandparent "in order" with the middle node as the root
II. We have four possibilities for the current positions of N, P, and G

Red-Black Trees, Inserting a Node: Left-Left

1. Right rotate around the grandparent

Tree Rotations: Right

Tree Rotations: Right

Tree Rotations: Right

Tree Rotations: Left

Tree Rotations: Left

Tree Rotations: Left

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the grandparent

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the grandparent
2. Swap the colors of the grandparent and the parent

Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the grandparent
2. Swap the colors of the grandparent and the parent

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent
2. Right rotate around the grandparent

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent
2. Right rotate around the grandparent
3. Swap the colors of the grandparent and the new node

Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent
2. Right rotate around the grandparent
3. Swap the colors of the grandparent and the new node

Red-Black Trees, Inserting a Node

- What about the Right-Right and Right-Left options?
- They are the inverse of the cases we've just covered.
-What are the running times of these procedures?
- Inserting the new node?
- Recoloring?
- Restructuring?
- We're not going to cover deletion, but what are your thoughts?
- Operation? (http://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/)
- Running time?

FUNCTION RBTreeInsert(tree, new_node)

```
# Search for position of new_node
parent = NONE
```

current_node = tree.root
WHILE current_node != NONE
parent = current_node
IF new_node.key < current_node.key
current_node = current_node.left
ELSE
current_node = current_node.right
new_node.parent = parent
 new_node.parent = parent

FUNCTION RBTreeInsert(tree, new_node)

\# Search for position of new_node

\# Insert new_node as root or left/right child
IF parent == NONE
tree.root = new_node
ELSE IF new_node.key < parent.key
parent.left = new_node
ELSE
parent.right = new_node

FUNCTION RBTreeInsert(tree, new_node)

RBTreeFixColors(tree, new_node)

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

\# Look for aunt/uncle node

IF node.parent == node.parent.parent.left aunt = node.parent.parent.right
IF aunt.color == RED
node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node = node.parent.parent

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

\# Look for aunt/uncle node

IF node.parent == node.parent.parent.left aunt = node.parent.parent.right IF aunt.color == RED

ELSE

IF node == node.parent.right node = node.parent LeftRotate(tree, node)
 node.parent.color = BLACK
node.parent.parent.color = RED
RightRotate(tree, node.parent.parent)

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

\# Look for aunt/uncle node

IF node.parent == node.parent.parent.left aunt = node.parent.parent.right

ELSE

aunt $=$ node.parent.parent.left
IF aunt.color == RED
node.parent.color = BLACK
aunt.color = BLACK
node.parent.parent.color = RED
node $=$ node.parent.parent

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

\# Look for aunt/uncle node

ELSE

aunt = node.parent.parent.left

ELSE

IF node == node.parent.left node = node.parent
RightRotate(tree, node)

node.parent.color = BLACK
node.parent.parent.color = RED
LeftRotate(tree, node.parent.parent)

FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED

\# Look for aunt/uncle node

IF node.parent == node.parent.parent.left aunt $=$ node.parent.parent.right

ELSE
aunt $=$ node.parent.parent.left
tree. root.color = BLACK

Is this a valid BST?

Is this a valid BST?

Is this a valid R-B Tree?

Is this a valid R-B Tree?

Is this the only valid coloring?

Is this the only valid coloring?

Is this the only valid coloring?

Insert: 9

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red

30

10

22

Aunt

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
a) If aunt is red
I. Change color of parent and aunt to black
II. Change color of the new node and the grandparent to red
III. Go to step (2) and treat grandparent as new node

Recolor

Valid R-B Tree?

BST Summary

- Most BST operations take O(height) time.
- With an unbalanced tree this could be as bad as $O(n)$
- We want to ensure that the height of the tree is $O(\lg n)$
- Red-Black trees provide one mechanism for creating balanced trees, meaning that they guarantee $\mathrm{O}(\lg \mathrm{n})$ for applicable BST operation
- This requires extra work while inserting and deleting in the form of tree rotations
- Bottom line: as long as our tree satisfies the Red-Black tree invariants (which it does with appropriate insert/delete procedures), then we can assume optimal running time for BSTs

