Binary Search Trees

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

- Compare binary search trees with sorted arrays
- Discuss the importance of a binary search tree's height
- Discuss common search tree algorithms

Exercise

- Search tree exercise

Extra Resources

- Introduction to Algorithms, 3rd, chapter 12

Sorted Arrays

\author{

Operation
Access
Search
Selection
Predecessor
Successor
Output (print)
Insert
Delete
Extract-Min

}

Given a set of key values, is a BST unique?
(ignore ties)

Binary Search Tree

Each node has:

- A pointer to a left subtree

A pointer to a right subtree

- A pointer to a parent node
- A piece of data (the key value)

Search tree property:

- All keys found in a left subtree must be less than the key of the current node
- All keys found in a right subtree must be greater than the key of the current node

Trees and Graphs

- Trees are a special type of graph
- Trees cannot contain cycles (acyclic)
- Trees always have directed edges
- Trees have a single source (no incoming edges) vertex called root
- All tree vertices have one parent (except root, which has no parents)
- Trees always have $\mathrm{n}-1$ edges
- BST compared to Heap?
- Heap is always balanced, BSTs are not necessarily balanced
- They have different properties (where are lesser values?)

Balanced Binary Search Tree (vs Sorted Array)

Operation
Access
Search
Selection
Predecessor
Successor
Output (print)
Insert
Delete
Extract Min

Running Time

$$
\begin{aligned}
& \mathrm{O}(1) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(1) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(1) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(1) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(\mathrm{n}) \\
& \mathrm{O}(\mathrm{n}) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(\mathrm{n}) \rightarrow \mathrm{O}(\lg \mathrm{n}) \\
& \mathrm{O}(\mathrm{n}) \rightarrow \mathrm{O}(\lg \mathrm{n})
\end{aligned}
$$

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)

Height of a Binary Search Tree

- Given a set of keys, we have many different choices for creating a binary search tree (we just have to satisfy the search tree properties)
- If we have n nodes, what is the maximum height of the tree?

- If we have n nodes, what is the minimum height of the tree?

Searching a BST

Search the tree T for the kes

1. Start at the root node
2. Recursively:
3. Traverse left if k < current key
4. Traverse right if $k>$ current key
5. Return the node when found or return NULL

Inserting into a BST

Insert the key k into the tree T

1. Start at the root node
2. Search for the key k (probably won't find it)
3. Create a new node and setup the correct pointer

Question

Given a binary search tree that is not necessarily balanced or unbalanced, what is the maximum number of hops needed to search the tree or insert a new node?

Options:
a. 1
b. $\lg n$
c. tree height
d. n

How do you find:

- Min
- Max

Exercise

- Predecessor (k)
- Successor (k)
- What is the running time?

1	3	4	6	7	8	10	13	14

How do you find:

- Min Go bett
- Max

- Predecessor (k)
- Successor (k)

- What is the running time?

How do you find:

- Min
- Max

- Predecessor (k)

- Successor (k)
- What is the running time?

How do you find:

- Min
- Max
- Predecessor (k)
- Successor (k)

- What is the running time?

1	3	4	6	7	8	$(10$	13	14

How do you find:

- Min
- Max
- Predecessor (k)
- Successor (k)
-What is the running time?

How would you print all nodes in order?

- In-order traversal:
- Recursively visit nodes on the left
- Print out the current node
- Recursively visit nodes on the right
- What is the running time?

Post-Order Traversal

- Recursively visit nodes on the left
- Recursively visit nodes on the right
\Leftrightarrow • "Visit" the current node

Pre-Order Traversal

- "Visit" the current node
- Recursively visit nodes on the left
- Recursively visit nodes on the right

<!DOCTYPE html>

<head>

<title>DOM Walk Demo</title>

1. What kind of traversal is this?
2. What is the output? <body>
```
<header>140</ header>
main
    <NI>Hello CSCI 140 PO</h1>
```

 MergeSort
 丸i>Breadth First Search<,
 Dijkstra's Algorithm<
 Binary Search Trees</
 Conquer The World</li=

 </main>
<footer>Prof. Clark</footer>
</main>
<footer>Prof. Clark</footer>LI
(li>MergeSort
丸i>Breadth First Search<
Dijkstra's Algorithm<
Binary Search Trees</
Conquer The World</li=
<footer>Prof. Clark</footer>

```
var indentLevel = 0;
var walk the DOM = function walk(node, func)
    func(node)
    UL
    UL
        MEADER
        MEADER
        MEADER
        H1
        H1
        H1
BODY)
BODY)
    indemtLevel++,
            LI
            LI
            LI
            LI
    node = node.firstChild;
            LI
            LI
    while (node) {
            LI
            LI
            if (node.nodeName !== "#text") {
                walk(node, func);
    FOOTER
    FOOTER
1.What kind of traversal is this?
2. What is the output?
            }
            node = node.nextSibling;
    }
    indentLevel--;
}
walk_the_DOM(document.body function (node)
    console.log(") "repeat(indentLevel) + node.nodeName);
});
```


Deleting a node from a BST

Deletion is often the most difficult task for treelike structures

- Search for the key
- Case 1: If the node has no children then just delete
- Case 2: If the node has one child then splice it out
- Case 3: if the node has both children
- Find the node's predecessor
- Swap the node with its predecessor
- Delete the node

Selection and Rank with a BST

How would you compute the i^{t} order statistic using a BST?

Idea: store some metadata at each node

- Let $\operatorname{size}(x)=$ the number of nodes rooted at x (the number of nodes that can be reached via the left and right children pointers

How would you calculate size(x)?
-What kind of traversal would this use (in order, pre, or post)?

- size(x) = size(left) + size(right) + 1 null
null

FUNCTION UpdateSizes(bst_node)
IF bst_node != NONE

Selection and Rank with a BST

FUNCTION GetIthOrderStatistic(bst_node, i)
left_child_size = bst_node.left.size
 RETURN bst_node.value

ELSE IF left_child_size \geq i
RETURN GetIthOrderStatistic(bst_node.left, i)

ELSE

Balanced Binary Search Trees
-Why is balancing important? LIlt ops depend on

- What is the worst-case height for a binary tree?
- Balanced tree: the height of a balanced tree stays $\mathrm{O}(\lg \mathrm{n})$ after insertions and deletions
- Many different types of balanced search trees:
- AVL Tree, Splay Tree, B Tree Red-Black Tree

